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Naturalness of Weak Scale
Naturalness requires top partners to be close to the 
weak scale to cancel the top loop contribution to the 
Higgs potential. 

Extensive searches at LHC have not found (colored) 
top partners below ~1 TeV.
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Summary of÷t1 ! t ÷! 0
1 searches
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Observed limits Expected limits All limits at 95% CL

=13 TeVs

 [CONF-2017-020]-1t0L 36.1 fb

 [CONF-2016-050]-1t1L 13.2 fb

 [CONF-2016-076]-1t2L 13.3 fb

 [1604.07773]-1MJ   3.2 fb

Run 1 [1506.08616]
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¥ Updated results from CMS are expected in time for Moriond QCD
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Introduction
¥With 36 fb-1 at 13 TeV, unfortunately SUSY 

hasnÕt been found yet.

¥The stop mass limit has reached ~1 TeV for a 
light LSP.

Summary
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• Presented the status of VLQ searches in CMS focusing on some of the recent results
• No sign of VLQ yet
• But we are setting stronger limits than ever

• More data is coming in, stay tuned for many interesting results

Supersymmetry
Global symmetry



Neutral Naturalness

The naturalness problem can be alleviated if top 
partners do not carry color.
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Scalar Top Partner Fermion Top Partner

All SM Charges SUSY pNGB Higgs

EW charges Folded SUSY 
(Burdman, Chacko, Goh, Harnik)

Quirky Little Higgs 
(Cai, HC, Terning)

No SM Charges
Tripled Top  

(HC, Li, Salvioni, Verhaaren) 
/Hyperbolic Higgs 

(Cohen,Craig, Giudice,McCollough)

Twin Higgs 
(Chacko, Goh, Harnik)



Tripled Top Model

¥ Extend color gauge group to SU(3) 3, A labels 
SM color, B,C!  hidden colors.
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contribution to the Higgs potential from the top sector is calculable and Þnite, and only has
logarithmic sensitivity to the heavy mass scaleM of the true stops. The 4D construction
allows more freedom compared to 5D models. The superpartners of the SM EW sector are
not governed by the same mass scale as the true stops, and can still be light. We do not
need hidden sector partners for the Þrst two generations, since their contributions to the
Higgs potential are small. Furthermore, freedom in hidden sector hypercharge assignments
allows the top partners to be fully SM-singlet scalars, even though some new EW-charged
particles are needed for the complete model.

Detecting completely SM singlet scalar top partners provides an interesting experi-
mental challenge. While the Higgs may couple to new states beyond the SM (BSM), its
couplings to SM Þelds can be very SM-like. The collider phenomenology of such scenar-
ios has been explored [8, 9] using bottom-up simpliÞed approaches, but a complete model
has not yet appeared.1 The framework outlined in this work, however, has phenomenol-
ogy determined largely by the EW-charged particles that accompany the SM singlet top
partners.

In the next section we describe the model and discuss the structure of the Higgs poten-
tial it generates. Section3 explores a possible mechanism for obtaining the special soft mass
structure required by our construction, with additional details provided in appendix A. The
phenomenology of the model and the constraints on its parameters are analyzed in sec-
tion 4, while technical derivations of important results are given in appendicesB, C, and D.
We conclude in section5.

2 A tripled top model

We extend a supersymmetric SM by adding two copies of a ÒhiddenÓ top quark sector,
which we label B and C, with A labeling the SM sector. The hidden tops are not charged
under the SM color but carry hidden colors of SU(3)B and SU(3)C respectively. Both
SU(2) doublet and singlet hidden tops have mirror partners and form vector-like pairs.
The superpotential of the three top sectors takes the form

WZ3 = yt (QA Hu c
A + QB Hu c

B + QC Hu c
C ) + M (u!

B uc
B + u!

C uc
C ) + ! (QB Q!c

B + QC Q!c
C ) .
(2.1)

The couplings with the (up-type) Higgs respect a Z3 symmetry, which also relates the
three SU(3) gauge groups. Accordingly, we call this a Òtripled topÓ framework. The
supersymmetric vector-like mass termsM and ! of the hidden sectors softly breakZ3 to
Z2. M is taken to be multi-TeV while ! is assumed to be below 1 TeV, which we will see
keeps the Higgs mass light.

The SM Þelds have the usual charges under the EW SU(2)L ! U(1)Y ,

H =

!
h+

h0

"

" 21/ 2 , QA =

!
tA

bA

"

" 21/ 6 , uc
A " 1" 2/ 3 , (2.2)

1An independent approach has been pursued in ref. [10].

Ð 3 Ð

Superpotential for the top sector:

Leading soft breaking masses: JH
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which also deÞnes the component Þelds. For theB and C sectors we choose

QB,C =

!
tB,C

bB,C

"

! 2! 1/ 2 , Q"c
B,C =

!
b"c

B,C

t"c
B,C

"

! 21/ 2 , uc
B,C , u"

B,C ! 10 . (2.3)

Notice that ÒuÓ Þelds are SU(2)L singlets, while ÒtÓ states belong to doublets. We em-
phasize that the hypercharge assignments of theB and C Þelds are free, up to keeping
the Yukawa terms gauge invariant. We speciÞcally choose the SU(2)L singlets to be com-
plete SM singlets. Their scalar components play the roles of top partners, cutting o! the
quadratic top loop contribution to the Higgs potential.

The leading soft SUSY-breaking masses are assumed to take the form

Vs = #m2
$

| #QA |2 + |÷uc
A |2

%
" #m2

$
|÷uc

B |2 + |÷uc
C |2

%
. (2.4)

The opposite-sign, equal-magnitude soft mass terms ensure the Higgs potential from the
top sectors is calculable and Þnite. Their possible origins are discussed in the next section.
The soft SUSY-breaking masses raise the colored stop masses and lower the masses of ÷uc

B

and ÷uc
C . To make ÷uc

B and ÷uc
C light #m must be close toM , so the masses of ÷uc

B , ÷uc
C are,

before mixing e! ects from the Higgs vacuum expectation value (VEV), given by

" #
&

M 2 " #m2 $ M. (2.5)

At the same time the colored stop masses are raised to the multi-TeV scale.
In addition to the soft SUSY breaking masses in eq. (2.4), the A sector gluino and light

generation squarks must also have multi-TeV SUSY-breaking masses to evade LHC bounds.
All other Þelds can receive subleading SUSY-breaking masses of a few hundred GeV which
split the fermions and bosons in the supermultiplets, without spoiling naturalness.

2.1 Higgs potential

We now demonstrate that the one-loop quadratic contribution to the Higgs potential from
the top quark is canceled by the neutral top partners. Consequently, the Higgs potential has
no quadratic dependence on the heavy scaleM . Before deriving the complete expression
of one-loop Coleman-Weinberg (CW) [11] potential for general parameters, we show the
protection of the Higgs mass in the limit #m % M (" % 0). This case is similar to the
original FSUSY, whose authors pointed out that the cancelation of divergences is tied to the
apparent supersymmetric structure of the theory whenonly scalar labels are exchanged.
The Higgs mass is protected by this accidental supersymmetry.

The Higgs-dependent scalar masses that arise from the superpotential of the top sector
can be divided into Þve groups

V1 = y2
t h2 '

|÷tA |2 + |÷uc
A | + |÷tB |2 + |÷uc

B | + |÷tC |2 + |÷uc
C |

(
,

V2 = M 2 '
|÷uc

B |2 + |÷uc
C |2

(
+ M 2 '

|÷u"
B |2 + |÷u"

C |2
(

,

V3 = yt hM
'
÷t#
B ÷u"

B + ÷t#
C ÷u"

C + h .c.
(

, (2.6)

V4 = !2 '
|÷tB |2 + |÷t "c

B |2 + |÷tC |2 + |÷t "c
C |2

(
,

V5 = yt h !
'
÷uc#

B
÷t "c
B + ÷uc#

C
÷t "c
C + h .c.

(
,

Ð 4 Ð

M~ few TeV,   !~ few hundred GeV

em ! M ! few TeV

� !
!

M 2 " "m2 # few hundred GeV $ M



Accidental SUSY

5

c

JH
E

P
05(2018)057

Figure 1 . Mass spectrum in the limit ! ! 0 ( !m ! M ) and ! ! 0, illustrating the accidental
SUSY that protects the Higgs mass. We have" B/C = cos "L u!

B/C " sin"L tB/C and !SB/C =

cos"L ÷u!
B/C " sin"L ÷tB/C , where sin"L |! " 0 = " yt h/

"
M 2 + y2

t h2 .

where we deÞnedh # Reh0. After the soft masses

Vsoft ( !m) = !m2
#

|÷tA |2 + |÷uc
A |2

$
" !m2 %

|÷uc
B |2 + |÷uc

C |2
&

(2.7)

with !m = M are added, we expect that ÷uc
B , ÷uc

C will replace the roles of÷tA and ÷uc
A as they

become massless. Thus, the exchange

÷tA $ ÷uc
B , ÷uc

A $ ÷uc
C , (2.8)

denoted by the mapping #, may lead to an accidental SUSY. Notice Þrst that under this
exchangeV1, V3, and V4 are invariant, that is #[V1,3,4] = V1,3,4. Next, in the limit !m = M

# [V2 + Vsoft (M )] = V2 , (2.9)

which is a completely supersymmetric scalar potential. In other words, except forV5,
in the limit !m ! M there is an accidental supersymmetry, a potential with no SUSY-
breaking terms. In this limit we expect only V5 to contribute to the Higgs mass, yielding
% Ncy2

t ! 2 ln M 2/ (16$2) at one loop. As long as! is only a few hundred GeV, it does
not cause a naturalness problem. Figure1 shows the spectrum in the limit !m ! M and
! ! 0 : each fermion is exactly degenerate with two scalars of equal coupling to the Higgs,
ensuring that the Higgs mass parameter vanishes exactly.

This expectation is borne out by the explicit CW computation (for general !m &= M ).
First, we Þnd that there are neither quadratic nor logarithmic divergences, since both
STr M 2 = 0 and STr M 4 = " 8Nc ! 2(M 2 " ! 2) are Þeld-independent. Proceeding to the

Ð 5 Ð

¥ In the limit !, !  !  0, there is an accidental SUSY 
in the spectrum and contributions to the Higgs 
potential cancel.

¥ For Þnite !, ! , the correction to the Higgs 
potential is Þnite and controlled by the scales of 
!, ! .
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which also deÞnes the component Þelds. For theB and C sectors we choose

QB,C =

!
tB,C

bB,C

"

! 2! 1/ 2 , Q"c
B,C =

!
b"c

B,C

t"c
B,C

"

! 21/ 2 , uc
B,C , u"

B,C ! 10 . (2.3)

Notice that ÒuÓ Þelds are SU(2)L singlets, while ÒtÓ states belong to doublets. We em-
phasize that the hypercharge assignments of theB and C Þelds are free, up to keeping
the Yukawa terms gauge invariant. We speciÞcally choose the SU(2)L singlets to be com-
plete SM singlets. Their scalar components play the roles of top partners, cutting o! the
quadratic top loop contribution to the Higgs potential.

The leading soft SUSY-breaking masses are assumed to take the form

Vs = #m2
$

| #QA |2 + |÷uc
A |2

%
" #m2

$
|÷uc

B |2 + |÷uc
C |2

%
. (2.4)

The opposite-sign, equal-magnitude soft mass terms ensure the Higgs potential from the
top sectors is calculable and Þnite. Their possible origins are discussed in the next section.
The soft SUSY-breaking masses raise the colored stop masses and lower the masses of ÷uc

B

and ÷uc
C . To make ÷uc

B and ÷uc
C light #m must be close toM , so the masses of ÷uc

B , ÷uc
C are,

before mixing e! ects from the Higgs vacuum expectation value (VEV), given by

" #
&

M 2 " #m2 $ M. (2.5)

At the same time the colored stop masses are raised to the multi-TeV scale.
In addition to the soft SUSY breaking masses in eq. (2.4), the A sector gluino and light

generation squarks must also have multi-TeV SUSY-breaking masses to evade LHC bounds.
All other Þelds can receive subleading SUSY-breaking masses of a few hundred GeV which
split the fermions and bosons in the supermultiplets, without spoiling naturalness.

2.1 Higgs potential

We now demonstrate that the one-loop quadratic contribution to the Higgs potential from
the top quark is canceled by the neutral top partners. Consequently, the Higgs potential has
no quadratic dependence on the heavy scaleM . Before deriving the complete expression
of one-loop Coleman-Weinberg (CW) [11] potential for general parameters, we show the
protection of the Higgs mass in the limit #m % M (" % 0). This case is similar to the
original FSUSY, whose authors pointed out that the cancelation of divergences is tied to the
apparent supersymmetric structure of the theory whenonly scalar labels are exchanged.
The Higgs mass is protected by this accidental supersymmetry.

The Higgs-dependent scalar masses that arise from the superpotential of the top sector
can be divided into Þve groups

V1 = y2
t h2 '

|÷tA |2 + |÷uc
A | + |÷tB |2 + |÷uc

B | + |÷tC |2 + |÷uc
C |

(
,

V2 = M 2 '
|÷uc

B |2 + |÷uc
C |2

(
+ M 2 '

|÷u"
B |2 + |÷u"

C |2
(

,

V3 = yt hM
'
÷t#
B ÷u"

B + ÷t#
C ÷u"

C + h .c.
(

, (2.6)

V4 = ! 2 '
|÷tB |2 + |÷t "c

B |2 + |÷tC |2 + |÷t "c
C |2

(
,

V5 = yt h !
'
÷uc#

B
÷t "c
B + ÷uc#

C
÷t "c
C + h .c.

(
,

Ð 4 Ð

Singlet Top Partners

¥ The hypercharge assignment in B,C sectors can be 
chosen to make the top partners         (sibling 
states) SM singlets.

¥ However, there are additional EW-charged 
supermultiplets,                    (cousin states), with 
mass given by ~ !  (~few hundred GeV).

÷uc
B,C

QB,C , Q!c
B,C
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Naturalness

¥ The model is natural from bottom-up point of view. To 
be natural in a UV theory requires two relations. 

-             and            have opposite-sign, equal-
magnitude soft breaking masses.  This can be 
achieved from some strong dynamics (see paper 
for details). 

-             . Without a physical explanation, this 
corresponds to a ! 2/M2 tuning. Compared with 
MSSM with heavy stops, it improves by a factor 2-5, 
depending on the tuning measure.

!QA , ÷uc
A ÷uc

B , ÷uc
C

!m ! M
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Collider Phenomenology

Possible light (< 1 TeV) states: 

¥ Hidden glueballs 

¥ Scalar top partners (siblings) 

¥ Top cousins (fermions and scalars) 

¥ MSSM sleptons, charginos, neutralinos 

¥ B, C sector gluinos
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Hidden Glueballs

¥ Without light states carrying hidden colors to 
break the string, the hidden glueballs are the 
lightest hidden hadrons. 

¥ It decays by mixing with SM Higgs boson. 
However, the coupling is suppressed compared 
to the cases in folded SUSY and fraternal twin 
Higgs, resulting in a much longer lifetime. Can 
have long displaced vertex or escape the 
detector. 

of the form factors. We Þnd that the extra soft terms give the most important e! ects, which

we estimate by adding a universal contribution! m2 to the scalar masses. Then the largest

correction comes fromM 2
Sc , which to leading order in! m2 ! " 2, " 2 yields

cLET
g "

! m2m2
t

4" 2" 2
. (46)

From this result we estimate the glueballÕs proper decay length

c#0++ # 1.2 m

!
5 GeV

# QCD B,C

" 7 # "
500 GeV

$4
%

"
300 GeV

&4 %
100 GeV

! m

&4

, (47)

where we have used the benchmark 5 GeV for the hidden conÞnement scale, typical for

# Z3 # 10 TeV. For comparison, in FSUSY the glueball decay length is a few millimeters for

similar values of the parameters, so in our model the hidden glueballs are relatively long-

lived. We stress, however, that this estimate of the glueball lifetime has large uncertainties

due to the high-power dependences on the model parameters. In Eq. (47), a mild suppression

of ! m can easily push the decay length beyond 10 meters, making the glueballs decay mostly

out of the LHC detectors. Conversely, for a larger conÞnement scale# QCD B,C
# 10 GeV

(corresponding to a higher# Z3 # 100 TeV) a moderate enhancement of! m can lead to a

sub-millimeter lifetime. This makes the identiÞcation of the 0++ $ bøb displaced vertices

challenging, although this may improve in the near future [34].

If m0 is smaller thanmh/ 2, the Higgs has exotic decays into pairs of 0++ hidden glueballs,

a signature that has been carefully analyzed in the context of Neutral Naturalness [35Ð37].

The rate is again controlled by the expression ofcg in Eq. (46). The width for decay to the

gluons of one sector reads

$(h $ gB gB ) =
$d(mh/ 2)2m3

h

72%3v2
|cg|2 , (48)

yielding a branching ratio

BR (h $ gB gB + gCgC) # 2 á10! 6

%
$d(mh/ 2)

0.17

&2 %
! m

100 GeV

&4 %
500 GeV

"

&4 %
300 GeV

"

&4

,

(49)

which is suppressed compared to FSUSY. The smaller branching ratio makes detection of

these exotic Higgs decays at the LHC extremely challenging, but they may be within reach

of a future 100 TeV collider, either with the main detectors or with MATHUSLA [38, 39],

depending on the glueball lifetime.

21

Subleading soft SUSY breaking
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Quirkonia
¥ If !  < ! , the (EW doublet) cousins are lighter than 

the siblings.

! > ! Case

t A,u A

t
!

A,u
!

A

QB! C,Q' B! C

uB! C,u 'B! C

Q
!
' B! CQ

!
B! C

u
!

B! C

u
!
' B! C

"! 0,# ??

g
!

HiddenMSSM

!

"

M

The SM doublet quirk production and annihilation are relevant.

Cheng, Li, Salvioni, Verhaaren arXiv:1803.03651 May, 2018, Pittsburgh 11 / 21

¥ The cousin quirks are pair-produced by DY, 
forming an excited quirkonium. It promptly de-
excites (by emitting photons or hidden glueballs) 
down to the ground state ( ! ±,0, " ±,0) before 
annihilating.
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¥ The ground state quirkonium can decay to 2 SM 
fermions or bosons.

Quirkonia

! !

! 0

! +0

! +

W +

Z, "

W +

! 0

! +0

! +

#

$+

FIG. 5: Dominant decays of the! +0 and ! +0 .

where the overall factor 2 accounts for the sum over theB and C sectors, BR(! ± 0 ! "#)

is the branching ratio to one family of leptons, andr ! ± 0 is the fraction of events that decay

from the vector bound state at the end of the de-excitation process. A na¬õve estimate from

simply counting the available degrees of freedom yieldsr ! ± 0 = 3/ 4. However, the production

and de-excitation of quirks is unlikely to lead to a pure singlet or triplet state, but rather

to a linear combination of the two. In this case the widths of both states a" ect the decay

probability as

r ! ± 0 =
3#(! ± 0)

#(! ± 0) + 3 #(! ± 0)
, (60)

with #(X ) the total width of X . The multiplicity of SM fermion-antifermion Þnal states

makes#(! ± 0) nearly 7 times larger than#(! ± 0), yielding r ! ± 0 " 0.95. Notice that this

estimate is a" ected by a small nonperturbative uncertainty due to the unknown ratio of the

wavefunctions at the origin of! and ! , which we assume to be 1. In Fig. 6 we compare the

signal cross section computed using Eq. (59) to the current ATLAS bound [53]. The two

estimates forr ! ± 0 , namely 3/ 4 and Eq. (60), lead to similar limits$ ! 700 GeV. Using the

Coulomb approximation to evaluate the wavefunction at the origin, we Þnd the total widths

of ! ± 0 and ! ± 0 are in the 1 - 10 MeV range. This corresponds totann " 10! 21 s # t !
de-excite ,

conÞrming that annihilation takes place immediately once the system reaches its ground

state.

The electrically neutral quirkonia%+ %! and %0%0 are produced in DY viaZ and photon

exchange. For$ = 500 GeV the 13 TeV production cross sections are 17 fb and 15 fb,

respectively. In contrast to the charged case, the neutral pseudoscalars! + ! and ! 00 decay

dominantly to two hidden gluons, which in turn hadronize into glueballs. While this may

lead to observable displaced decays in ATLAS and CMS [54], as discussed after Eq. (47)

the estimate of the glueball lifetime su" ers from large theoretical uncertainties. A more

robust signature is the dileptonic decay of! + ! and ! 00, whose rate is given by a formula

similar to Eq. (59). The large hadronic widths of the pseudoscalars imply a suppression

25

¥ The strongest bound comes from lv Þnal state, 
with !  !  700 GeV.

!" #$%

�� !" ! �� !! � � � �� �

�� #! � � � �� �

!"" #"" $""" $%"" $&"" $!"" $#"" %"""
"'$

"'(

$

(

$"

! �� !"#$ "

��
!!

!
��

��
��

��
��

��o
r�

���"
#fb

$

FIG. 6: Comparison of resonant quirkonium signals in the!" (blue) and !! (red) channels

to the experimental bounds. Solid lines indicate the theory predictions, where the

probability to decay from the vector bound state was computed according to Eq. (60) or

its analogue for the electrically neutral bound states. Dashed lines show the e! ect of

changing this probability to 3/ 4. Dotted lines correspond to the current ATLAS 95% CL

cross section limits. The resulting lower bounds on the quirkonium mass are shown by the

vertical lines.

of the probability to decay from the vector states: from the analogs of Eq. (60) we Þnd

r ! + ! ! r ! 00 ! 0.30. In addition, numerically BR(" + ! " !! )/ BR(" 00 " !! ) ! 2.4, hence

the signal from the " + ! dominates. The comparison of the total signal cross section to

the current ATLAS bound [55] is shown in Fig. 6. The resulting limit is# ! 600 GeV,

weaker than the one coming from the charged channel. The$+ ! " %%decay also leads to

# ! 600 GeV, as determined by comparing the signal prediction (enhanced byr ! + ! ! 0.70)

to the experimental limits on diphoton resonances [56].

The quirkonium bounds discussed above and illustrated in Fig. 6 are robust when the

siblings are heavier than the cousins, i.e., for# > #. In this case, the presence of light

EWinos or hidden gluinos may open new decay channels to these superpartners and therefore

modify the quirkonium branching ratios, but the constraints on# are not strongly altered.

In the opposite regime# < #, if there are light EWinos the fermionic cousins can

decay to a light sibling and an EWino, as depicted in Fig. 7. The quirkonium annihilation

26

! ± ,0

÷sc
!

÷" ± ,0

FIG. 7: Decay of a quirk to a light sibling and a light EWino in the case! ! ! + m÷! .

FIG. 8: Summary of the current constraints on the parameter space. We do not consider

the region ! < 100 GeV, where the Þne tuning! ! 2/M 2 becomes very severe. Bounds

from LEP2 rule out the gray shaded region! < 100 GeV. In purple, green, and orange we

show the exclusions coming from the"#, "" and $$ signals of the quirkonia, respectively,

see Sec. IV B. The quirkonium constraints can be relaxed or removed if! < ! and some

EWinos are light.

signals are then erased and replaced by those of the light siblings, which behave as scalar

quirks (ÒsquirksÓ). Their phenomenology is discussed in Sec. IV D. A summary of the quirk

constraints on the (! , ! ) parameter space is shown in Fig. 8.

27
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Squirkonium
¥ If ! < ! , the cousin states will likely decay to the 

sibling squirks (if chargino/neutralino are light 
enough).

JH
E

P
05(2018)057

Figure 2 . Illustrative tripled top spectrum with ! < ! . We show only the B sector states as the
C sector is identical, due to the residualZ2 symmetry.

with mixing angles given by

sin"L ! "
yt hM

M 2 " ! 2 , sin"R ! "
yt h!

M 2 " ! 2 . (4.4)

Hence # , # c form an electrically neutral Dirac fermion #0, whereas the SU(2)L partner
states bB , b!c  

B form a Dirac fermion #" with electric charge " 1 and massm! ! = ! .
The B sector scalar masses are given by

"
!

÷u!
B

÷tB

" #
M 2

S

#
÷u!

B
÷tB

$

, M 2
S =

#
M 2 yt hM

yt hM ! 2 + y2
t h2

$

, (4.5)

"
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÷uc
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M 2

Sc
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÷uc

B
÷t !c
B

$ #

, M 2
Sc =

#
! 2 + y2

t h2 yt h!
yt h! ! 2

$

, (4.6)

where ! 2 = M 2 " %m2. The M 2
S matrix is not a " ected by SUSY breaking, hence it is

diagonalized by a rotation R($L ) with $L = "L , yielding a heavy mass eigenstate%S with
M 2

!S
= M 2

! # M 2, and a light mass eigenstate ÷s with m2
÷s = m2

! 0
# ! 2. The M 2

Sc matrix
requires special attention. While the other particle mixings are suppressed byM and are
therefore small, in this case the large negative soft mass" %m2|÷uc

B |2 causes more uniform
mixing. Diagonalization is achieved through the rotation

#
÷uc

B
÷t !c
B

$

$ R($R)

#
÷sc

"

÷sc
"

$

, sin 2$R =
2yt h!

m2
2 " m2

1
sgn

&
! 2 " ! 2 " y2

t h2'
, (4.7)

where the mass eigenvalues are

m2
2,1 =

1
2

(
! 2 + ! 2 + y2

t h2 ±
) &

! 2 + ! 2 + y2
t h2

' 2 " 4! 2! 2

*
, (4.8)
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! ± ,0

÷sc
!

÷" ± ,0

FIG. 7: Decay of a quirk to a light sibling and a light EWino in the case! ! ! + m÷! .

FIG. 8: Summary of the current constraints on the parameter space. We do not consider

the region ! < 100 GeV, where the Þne tuning! ! 2/M 2 becomes very severe. Bounds

from LEP2 rule out the gray shaded region! < 100 GeV. In purple, green, and orange we

show the exclusions coming from the"#, "" and $$ signals of the quirkonia, respectively,

see Sec. IV B. The quirkonium constraints can be relaxed or removed if! < ! and some

EWinos are light.

signals are then erased and replaced by those of the light siblings, which behave as scalar

quirks (ÒsquirksÓ). Their phenomenology is discussed in Sec. IV D. A summary of the quirk

constraints on the (! , ! ) parameter space is shown in Fig. 8.

27
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Figure 9 . Cross sections for sibling squirkonium production at 13 TeV times branching ratios
for decay to SM particles, vs. the experimental bounds. We set! = 300 (500) GeV in the left
(right) panel. Red, blue, orange, and green curves correspond to theW W, ZZ, hh , and tøt channels,
respectively. Solid curves assume that all cousins, both fermions and scalars, decay to the light
sibling, whereas dashed curves include only the contributions from all squirk pairs. Dotted curves
show the current experimental limits on resonances with mass 2m÷sc

!
(! 2! ). The tøt constraint is

too weak to appear in the left panel.

ine" ective in preventing the annihilation of squirky cousin pairs. However, for ! even
moderately smaller than ! the decays dominate, and all cousins cascade down to the
light sibling.

5 Conclusions

The lack of LHC signals from new colored particles motivates the broad framework of
neutral naturalness. In this article we presented the Þrst supersymmetric model where
the top partners are complete SM singlet scalars, which we dubbed top siblings. While
inspired by Folded SUSY, our construction di" ers from it in several aspects. It is purely
four dimensional, thus allowing enough parametric freedom to easily accommodate realistic
electroweak symmetry breaking. Two hidden top sectors are needed to cancel the quadratic
top-loop corrections to the Higgs mass, but no hidden light generations are necessary.
The model also requires that the soft masses of the colored stops and of the siblings are
equal in magnitude, but opposite in sign. We have provided an explicit construction that
realizes this structure, where the top superÞelds, both visible and hidden, arise as IR
composite degrees of freedom of strongly coupled SUSY gauge theories. The associated
UV cuto" can be as high as 100 TeV, an order of magnitude larger than in many neutral
naturalness models.

Probing directly the SM-singlet siblings is a challenge for the LHC experiments. Con-
sequently, the collider phenomenology is largely governed by the top cousins, which are
electroweak-charged fermions and scalars that accompany the siblings. When the sibling

Ð 25 Ð

¥ SIbling squirkonium dominantly decays to hidden 
glueballs. Braching ratios to SM particles are 
small <z weak collider constraints.

¥ Can have EW SUSY signals like W/Z/hÕs+MET. 
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Variations of the Model 
One can switch the roles of           and                               

¥ In this variation, the scalar top partners (siblings) 
are EW doublets and the cousins are singlets. 

¥ The supersymmetric mass !  can be naturally very 
small. The light cousins can break the hidden 
color string, resulting in dark showers. 

¥ The decay of light hidden sector mesons (made 
of cousin quirks) back to SM particles could be 
either prompt or displaced, giving different 
interesting collider signatures.

QB,C uc
B,C .

2 Mostly doublet top partners (model 5 !!), new notation

In this version the states with mass" ! can be made full SM singlets, and the lightest electroweak doublets appear
at scale ! . The scalar potential is identical to model 5!, so it will not be repeated here. The superpotential is

W = yt QA Hu c
A + yt QB Hu c

B + yt QC Hu c
C + ! (uc

B u!
B + uc

C u!
C ) + M (QB Q!c

B + QC Q!c
C ) , (144)

where e.g.QA H = QT
A "H , " # i#2, etc. The soft masses are

Vs = ÷m2(| ÷QA |2 + |÷uc
A |2) $ ÷m2(| ÷QB |2 + | ÷QC |2) . (145)

The mass matrix for the fermions in the B sector is

$
!
u!

B tB
"

#
! 0

yt h M

$ #
uc

B
t!c
B

$
. (146)

This is diagonalized by the rotations (we use capital letters for the mass eigenstate Þelds)
#

u!
B

tB

$
%

#
cos$L sin$L

$ sin$L cos$L

$ #
U!

B
TB

$
,

#
uc

B
t!c
B

$
%

#
cos$R sin$R

$ sin$R cos$R

$ #
Uc

B
T!c

B

$
, (147)

with mixing angles given by

sin$L =
m!

M
sin$R &

! yt h
M 2 + y2

t h2 , sin$R =
yt h%

M 2 + y2
t h2

!
1 + O(! 2/M 2)

"
, (148)

where the Þrst relation is exact, whereas in the others we expanded for small! . As a result, %B # (U!
B , Uc  

B ) form
a Dirac fermion with small mass ofO(! ), whereas" B # (TB , T !c  

B ) acquire a large mass ofO(M ). More precisely,
the eigenvalues are for small!

UT
L M UR =

#
m!

M !

$
, m! &

M
%

M 2 + y2
t h2

! , M ! &
&

M 2 + y2
t h2 . (149)

The scalar masses in the B sector are given by
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t h2 $ ÷m2
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t h2 yt hM

yt hM M 2
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÷uc

B
÷t !c
B

$ "

. (150)

Assuming ÷m2 # M 2 $ ! 2, the mass eigenstates (again indicated by a capital letter) are obtained via
#

÷u!
B

÷tB

$
%

#
cos&L sin&L

$ sin&L cos&L

$ # ÷U!
B

÷TB

$
, sin&L &

! yt h
! 2 + y2

t h2 , (151)

where again we gave the small-! expansion, with

RT
L M 2

(L )RL =
#

m2
U!

M 2
T

$
, m2

U! &
! 2

! 2 + y2
t h2 ! 2 , M 2

T & ! 2 + y2
t h2 ; (152)

as well as #
÷uc

B
÷t !c
B

$
%

#
cos&R sin&R

$ sin&R cos&R

$ # ÷Uc
B

÷T!c
B

$
, sin&R &

yt h%
M 2 + y2

t h2
, (153)

with

RT
RM 2

(R)RR =
#

m2
U

M 2
T !

$
, m2

U &
M 2

M 2 + y2
t h2 ! 2 , M 2

T ! & M 2 + y2
t h2 . (154)

Notice that in this second case we have exact SUSY, hence&R = $R, m2
U = m2

! and M 2
T ! = M 2

! hold exactly.

Finally, for the electrically charged states: " #
B # (bB , b!c  

B ) form a Dirac fermion with mass M , while the scalar
÷bB has mass! 2 and ÷b!c

B has massM 2. Entirely analogous formulae apply for the C sector.
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Conclusions

¥ We discussed a new model where the top loop 
contribution to the Higgs potential is cut off by 
uncolored scalar top partners. They can even be SM-
neutral, Þlling the last entry of neutral naturalness. 

¥ There are relatively light EW doublet states, which 
provide a window to the collider phenomenology of 
this model, including quirkonia/squirkonia and long-
lived hidden glueballs. 

¥ There are variations of this model which can give very 
different and interesting phenomenologies, such as 
dark shower, emerging jets etc.


