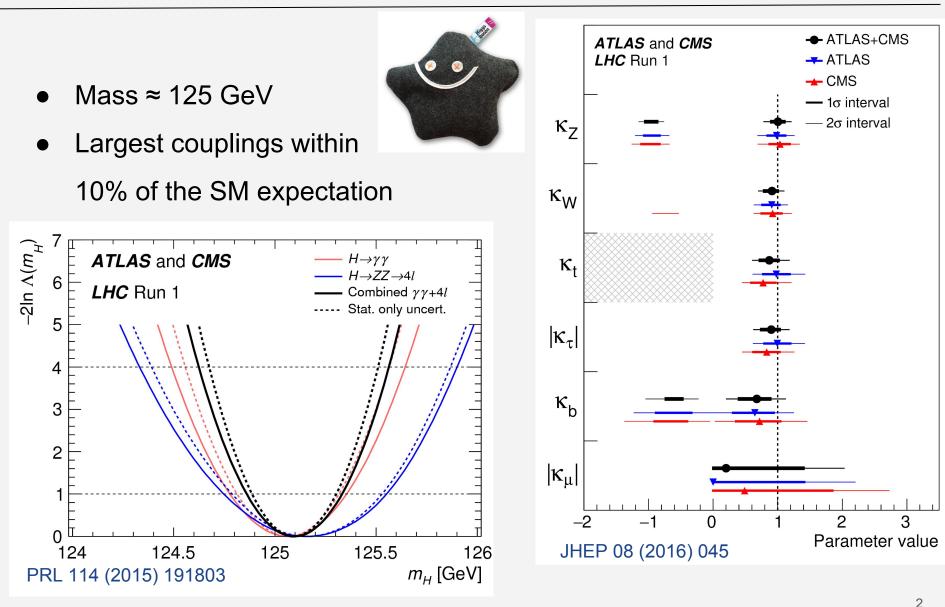


Higgs Cascade Decays and the LHC


SB, Freese, Shakya, Shah; 1703.07800 (Phys. Rev. D) SB, Shah; 1807.XXXXX SB, Shah, Freese; 180X.XXXXX

Sebastian Baum

Oskar Klein Centre for Cosmoparticle Physics Stockholm University

> SUSY 2018 Barcelona

All the Higgses that we know

Why do we want more Higgses?

Many shortcomings of the SM are intimately linked to the Higgs sector

- Hierarchy Problem
- Baryogenesis
- (Meta-)Stability Problem
- Flavor Structure

The Higgs sector is least well measured in the SM

Why 2HDM+S?

- 2HDM sector ubiquitous in BSM physics, e.g. SUSY
- SM gauge-singlets useful for
 - Baryogenesis [Profumo+ 0705.2425, Barger+ 0811.0393, Cline+ 1210.4196]
 - Constructing DM Models [SB+ 1712.09873]
- Same scalar sector as in well-motivated High-Scale models,
 - e.g. the Next-to-Minimal Supersymmetric Standard Model

- 2 SU(2)-doublets Φ_1, Φ_2 , and 1 (complex) SM singlet S
- Most general CP-conserving scalar potential has 27 physical d.o.f., which can be re-parameterized by 6 physical masses, 4 mixing angles, 3 vevs, 10 trilinear and 4 quartic couplings

[SB, Shah 1807.XXXX]

• Rotate to Higgs basis

$$\begin{bmatrix} G^+ \\ \frac{1}{\sqrt{2}} \left(H^{\text{SM}} + iG^0 \right) \end{bmatrix} = \sin \beta \Phi_1 + \cos \beta \Phi_2$$
$$\begin{bmatrix} H^+ \\ \frac{1}{\sqrt{2}} \left(H^{\text{NSM}} + iA^{\text{NSM}} \right) \end{bmatrix} = \cos \beta \Phi_1 - \sin \beta \Phi_2$$
$$\frac{1}{\sqrt{2}} \left(H^{\text{S}} + iA^{\text{S}} \right) = S ,$$

• 7 degrees of freedom after EW symmetry breaking:

 $\{H^{\text{SM}}, H^{\text{NSM}}, H^{\text{S}}\}; \{A^{\text{NSM}}, A^{\text{S}}\}; H^{\pm}$

Alignment and Mass Eigenstates

$$h_{i} = S_{h_{i}}^{\text{SM}} H^{\text{SM}} + S_{h_{i}}^{\text{NSM}} H^{\text{NSM}} + S_{h_{i}}^{\text{S}} H^{\text{S}} , \quad h_{i} = \{h_{125}, H, h\}$$
$$a_{i} = P_{a_{i}}^{\text{NSM}} A^{\text{NSM}} + P_{a_{i}}^{\text{S}} A^{\text{S}} , \quad a_{i} = \{A, a\}$$

• SM-like nature of the observed 125 GeV state requires a mass eigenstate approximately aligned with *H*SM

Alignment and Mass Eigenstates

$$h_{i} = S_{h_{i}}^{\text{SM}} H^{\text{SM}} + S_{h_{i}}^{\text{NSM}} H^{\text{NSM}} + S_{h_{i}}^{\text{S}} H^{\text{S}} , \quad h_{i} = \{h_{125}, H, h\}$$
$$a_{i} = P_{a_{i}}^{\text{NSM}} A^{\text{NSM}} + P_{a_{i}}^{\text{S}} A^{\text{S}} , \quad a_{i} = \{A, a\}$$

 SM-like nature of the observed 125 GeV state requires a mass eigenstate approximately aligned with HSM

Alignment by decoupling

• Suppress mixing by choosing $\{H^{NSM}, H^{S}\}$ heavy wrt. H^{SM}

⇒ Additional Higgses out of LHC reach

Alignment and Mass Eigenstates

$$h_{i} = S_{h_{i}}^{\text{SM}} H^{\text{SM}} + S_{h_{i}}^{\text{NSM}} H^{\text{NSM}} + S_{h_{i}}^{\text{S}} H^{\text{S}} , \quad h_{i} = \{h_{125}, H, h\}$$
$$a_{i} = P_{a_{i}}^{\text{NSM}} A^{\text{NSM}} + P_{a_{i}}^{\text{S}} A^{\text{S}} , \quad a_{i} = \{A, a\}$$

 SM-like nature of the observed 125 GeV state requires a mass eigenstate approximately aligned with HSM

Alignment by decoupling

• Suppress mixing by choosing $\{H^{NSM}, H^S\}$ heavy wrt. H^{SM}

⇒ Additional Higgses out of LHC reach

Alignment without decoupling

 Suppress mixing by conspiracy of parameters

 \Rightarrow Additional Higgses can remain light and thus accessible at LHC!

Complexity of Higgs sector allows for new decay modes

Alignment suppressed

 $(H \to h_{125} h_{125})$ $(A \to Z h_{125})$

Complexity of Higgs sector allows for new decay modes

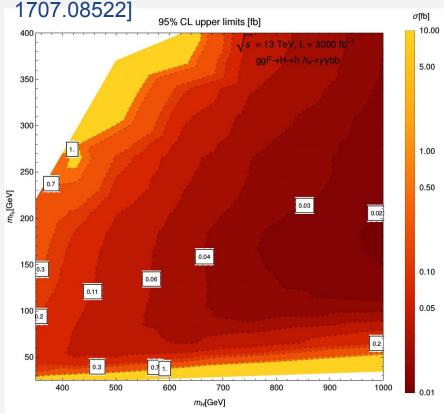
•
$$(h_i \rightarrow h_j h_k)$$
, $(h_i \rightarrow a_j a_k)$, $(a_i \rightarrow h_j a_k)$
• $(h_i \rightarrow Z a_j)$, $(a_i \rightarrow Z h_j)$

$$g_{0} \qquad \Phi_{i}, \qquad \Phi_{i},$$

(a)

Dominant modes:

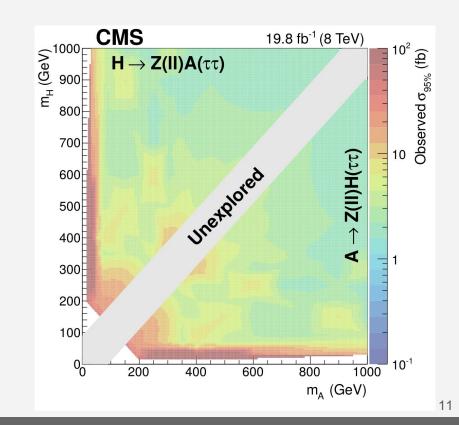
$$(H \to h_{125} h) \qquad (H \to Z a)$$
$$(A \to h_{125} a) \qquad (A \to Z h)$$

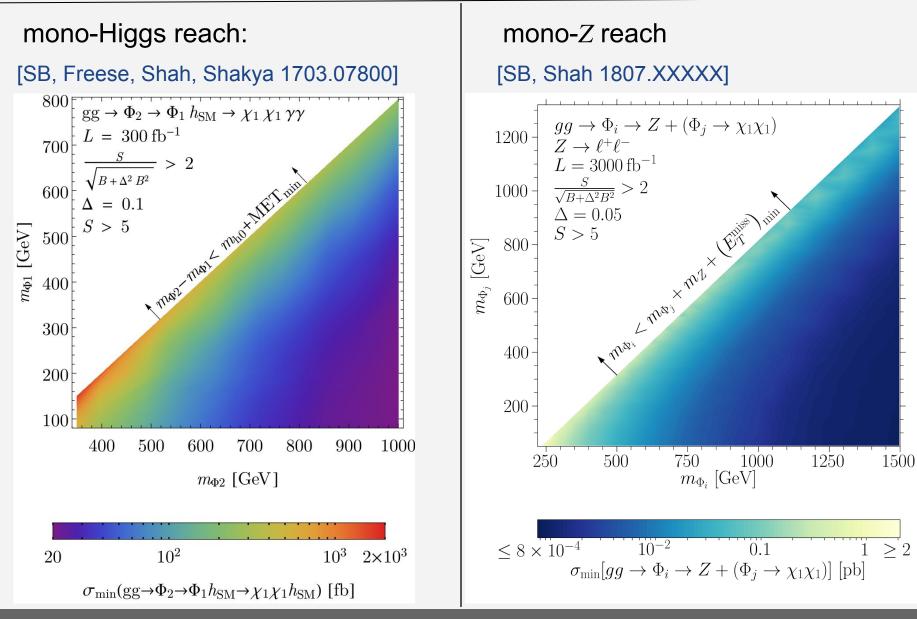

(b)

LHC Reach: SM decays of additional light states

Higgs + visible reach in

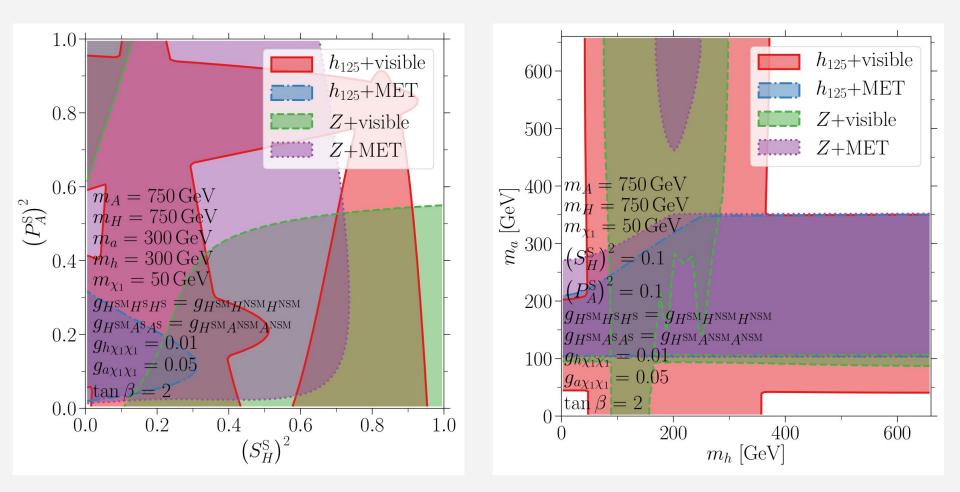
bbbb and *bb* $\gamma\gamma$ final states:


[Ellwanger, Rodriguez-Vazquez


Z + visible reach in

 $\ell\ell bb$ and $\ell\ell \tau \tau$ final states

extrapolated from CMS limit [CMS 1603.02991]

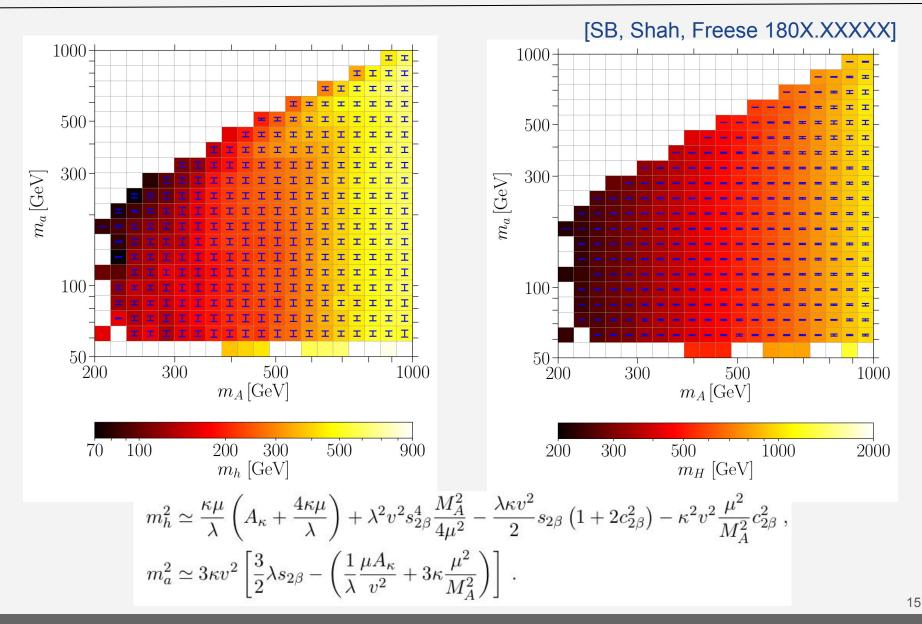


LHC Reach: MET (DM) decays of additional light states

Sebastian Baum

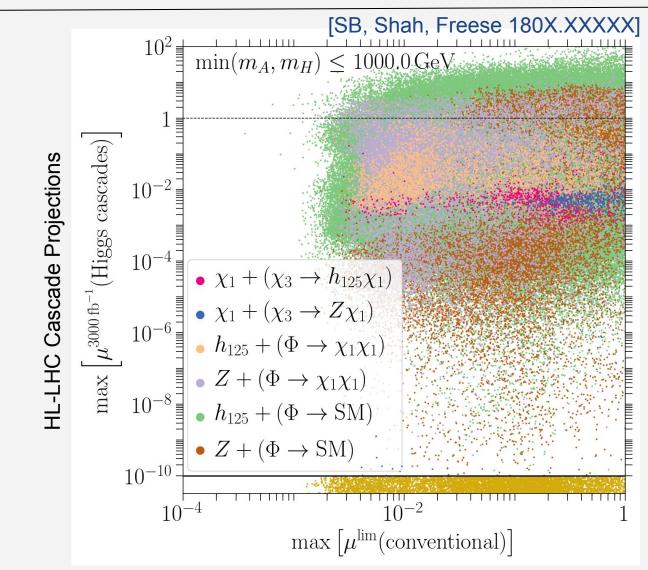
SUSY, 2018-07-24

Next-to-Minimal Supersymmetric Standard Model

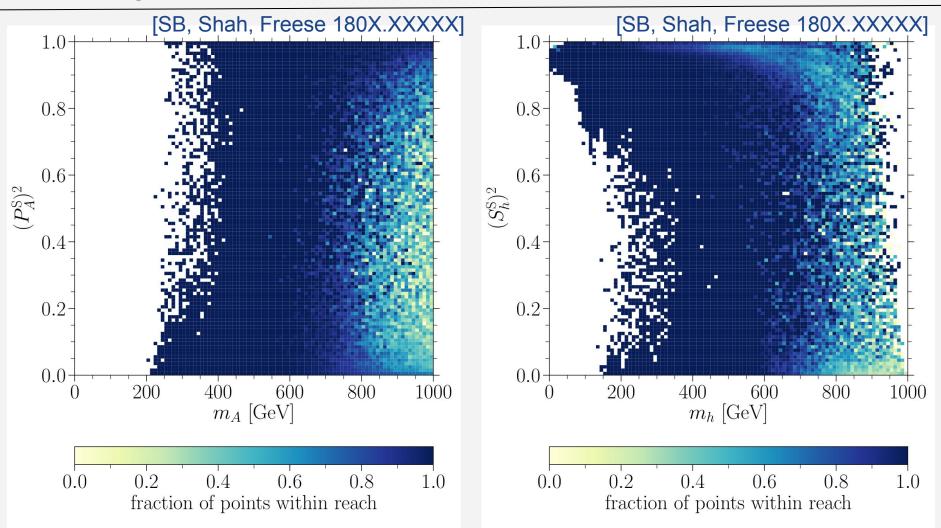

- MSSM particle content + chiral superfield (singlet under SM)
- 2HDM+S Higgs sector, but only 6 free parameters (after fixing v = 174 GeV)

```
Acceptable pheno of 125 GeV Higgs
most easily obtained for λ~0.6.
Alignment and ~125 GeV at tree level!
[Carena+ 1510.09137]
[SB, Freese, Shakya, Shah 1703.07800]
```

 Correlations of masses in Higgs & Neutralino sector allows for effective re-parametrization in terms of {tan(β), m_A, m_a, P_A^S; λ, κ} [SB, Shah, Freese 180X.XXXX]


$$W \supset \lambda \widehat{S} \, \widehat{H}_u \cdot \widehat{H}_d + \frac{\kappa}{3} \widehat{S}^3$$

Correlation of Higgs Masses


Sebastian Baum

Power of Cascades + Conventional Searches

Current Bounds from conventional $pp \rightarrow H/A \rightarrow SM$ SM searches

Coverage of NMSSM parameter space

[Trusting LHC-experiments to improve conventional limits by factor 100 (30 -> 3000/fb + better bkg rejection) and Cascade projections by factor 10]

Sebastian Baum

Conclusions

- Seemingly complicated Higgs sectors can be described effectively by approximate alignment + physically intuitive parameters such as masses and mixing angles
- Higgs Cascades provide a powerful tool to constrain models with Higgs sectors larger than 2HDM
 - Remain effective in large m_A low tan(β) regime
 - Need to consider all Higgs Cascade modes to cover parameter space
 - In combination with conventional searches, much progress to complete coverage of the NMSSM parameter space with a Higgs sector below 1 TeV can be made!
- In case of discovery, measuring the effects of the singlet is crucial from differentiating the 2HDM+S (NMSSM) from a 2HDM (MSSM)

EXTRA SLIDES

"standard"		"light subset"	
$\tan\beta$	[1; 5]	[1; 5]	
λ	[0.5; 2]	[0.5;1]	
κ	[-1;+1]	[-0.5; +0.5]	
A_{λ}	$[-1;+1]{\rm TeV}$	$[-0.5; +0.5]{ m TeV}$	
A_{κ}	$[-1;+1]{\rm TeV}$	$[-0.5; +0.5]{ m TeV}$	
μ	$[-1;+1]{\rm TeV}$	$[-0.5; +0.5]{ m TeV}$	
M_{Q_3}	$[1;10]\mathrm{TeV}$	$[1;10]{ m TeV}$	

Table 1. NMSSM parameter ranges used in NMSSMTools scans.

- 10⁸ points for each parameter set
- All sfermion mass parameters (except stop) set to 3 TeV
- $M_1 = M_2 = 1 \text{ TeV}$, $M_3 = 2 \text{ TeV}$

LHC searches used to constrain parameter scan

decay channel	NMSSM Higgs	Reference	Reference
	tested	$\sqrt{s} = 8 \mathrm{TeV}$	$\sqrt{s} = 13 \mathrm{TeV}$
$H \to \tau^+ \tau^-$	h_i, H_3, A_1, A_2	[52-54]	[55-58]
$H ightarrow b ar{b}$	h_1, H_3, A_1, A_2		[59]
$H ightarrow \gamma \gamma$	h_i, H_3, A_1, A_2	[60-62]	[63-66]
$H \rightarrow ZZ$	h_1, H_3	[67]	[68-76]
$H \rightarrow WW$	h_i, H_3	[77-79]	[80 - 85]
$H \to h_{\rm SM} h_{\rm SM} \to b \bar{b} \tau^+ \tau^-$	h_i, H_3	[86-88]	[89-91]
$H \to h_{\rm SM} h_{\rm SM} \to b \bar{b} \ell \nu_\ell \ell \nu_\ell$	h_i, H_3	—	[92, 93]
$H \to h_{\rm SM} h_{\rm SM} \to b \bar{b} b \bar{b}$	h_i, H_3	[94, 95]	[96-99]
$H \to h_{\rm SM} h_{\rm SM} \to b \bar{b} \gamma \gamma$	h_i, H_3	[100, 101]	[102 - 104]
$A \to Zh_{\rm SM} \to Zb\bar{b}$	A_1, A_2	[105, 106]	[107, 108]
$A \to Z h_{\rm SM} \to Z \tau^+ \tau^-$	A_1, A_2	[86, 105]	<u>1900</u> 9
$h_{\rm SM} \rightarrow AA \rightarrow \tau^+ \tau^- \tau^+ \tau^-$	A_1, A_2	[109]	
$h_{\rm SM} ightarrow AA ightarrow \mu^+ \mu^- b ar{b}$	A_1, A_2	[109]	<u>177</u> 3
$h_{\rm SM} \rightarrow AA \rightarrow \mu^+ \mu^- \tau^+ \tau^-$	A_1, A_2	[109]	<u></u>)
$h_{\rm SM} \to AA \to \mu^+ \mu^- \mu^+ \mu^-$	A_1, A_2		[110]
$A/H \rightarrow Zh_i/A_1$	$A_2/H_3, h_i/A_1$	[44]	

Table 2. Direct Higgs searches at the LHC used for this work. $h_i = h_2$ (h_1) if the (second) lightest scalar is SM-like.