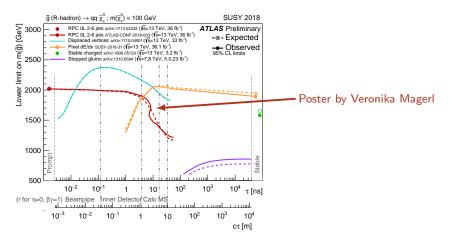
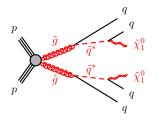
Searches for squarks and gluinos in signatures with long-lived particles with ATLAS

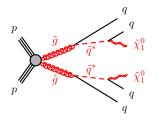
Dominik Krauss on behalf of the ATLAS collaboration


Max Planck Institute for Physics

SUSY 2018 conference July 25, 2018

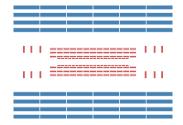

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Searches covered in this talk



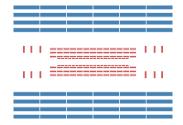
Tracks with large ionisation energy loss in the pixel detector [SUSY-2016-31]

Oisplaced vertices in the inner detector [SUSY-2016-08]



- Long-lived gluino due to very heavy squarks
- Gluino hadronises with Standard Model partons to R-hadron
- Light-quark system of R-hadrons can change due to hadronic scattering
 - \rightarrow Electric charge not constant over time

- Long-lived gluino due to very heavy squarks
- Gluino hadronises with Standard Model partons to R-hadron
- Light-quark system of R-hadrons can change due to hadronic scattering
 - \rightarrow Electric charge not constant over time
- Origin of E_T^{miss} :
 - Decay inside detector: $\tilde{\chi}_1^0$ not detected
 - Decay outside detector: R-hadron momentum often not fully reconstructed due to small energy deposits in calorimeters and late arrival at muon spectrometer


Measurement of R-hadrons in the inner detector

Silicon trackers in the barrel region, Pixel and SCT

- Charged R-hadron: Large ionisation energy loss dE/dx
 - dE/dx measured for each pixel cluster individually
 - Truncated mean using at least two clusters to avoid tail of Landau distribution

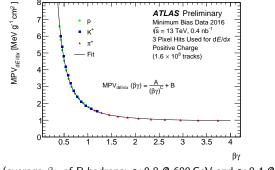
Measurement of R-hadrons in the inner detector

Silicon trackers in the barrel region, Pixel and SCT

- Charged R-hadron: Large ionisation energy loss dE/dx
 - dE/dx measured for each pixel cluster individually
 - Truncated mean using at least two clusters to avoid tail of Landau distribution
- Charged and neutral R-hadron: Displaced vertex
 - Requires additional large radius tracking to reconstruct tracks up to $|d_0| < 300 \text{ mm}$
 - Dedicated secondary-vertex algorithm

- $\bullet\,$ Signature: Isolated track with $p>150\,{\rm GeV},\,|\eta|<2$ and $dE/dx>1.8\,{\rm MeV\,g^{-1}\,cm^2}$
- Search for excesses in mass distribution of tracks
- $\bullet ~ \mathsf{E}_T^{miss} > 170 \, \text{GeV}$
- Two signal regions (SRs):

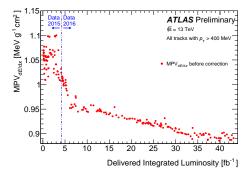
1) Metastable

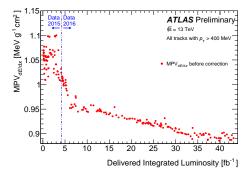

- Decay before muon spectrometer: $c au_{Lab}(R-hadron) \lessapprox 4 \text{ m}$
- Muon veto

2) Stable

- Decay outside detector: $c\tau_{Lab}(R-hadron) \gtrapprox 12 \text{ m}$
- Tighter isolation

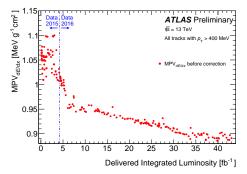
Calibration of dE/dx


- Calibration of dE/dx based on p, K and π in minimum bias data
 - **(**) Determine most probable value (MPV) of dE/dx binned in $\beta\gamma$ for each particle
 - 2 Low momentum correction for kaons and protons
 - § Fit MPV($\beta\gamma$) with Bethe-Bloch function independently for q > 0 and q < 0


(average $\beta\gamma$ of R-hadrons: pprox 0.8 @ 600 GeV and pprox 0.4 @ 2.0 TeV)

• Measured dE/dx and momentum \rightarrow mass of particle

Data] Run dependent scale factor to account for changes in experimental conditions



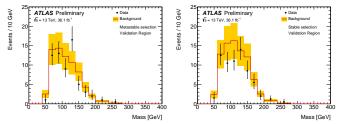
[Data] Run dependent scale factor to account for changes in experimental conditions

(a) [Data,MC] Correct for η dependence of dE/dx to simplify background estimation

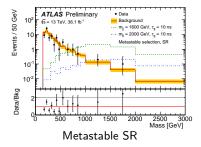
[Data] Run dependent scale factor to account for changes in experimental conditions

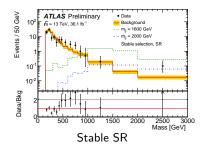
- **(a)** [Data,MC] Correct for η dependence of dE/dx to simplify background estimation
- [MC] Scale factor of 0.886 to align simulation to data

• Sources for large *dE/dx*: Multiple measurements from tail of *dE/dx* distribution, overlapping tracks or wrongly assigned hits


Background estimation

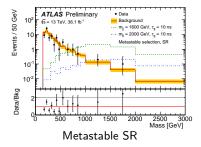
- Sources for large *dE/dx*: Multiple measurements from tail of *dE/dx* distribution, overlapping tracks or wrongly assigned hits
- Data-driven background estimation based on two control regions (CRs)
 - **(**) CR with inverted dE/dx cut $\rightarrow p$ template
 - **2** CR with inverted E_T^{miss} cut $\rightarrow dE/dx$ template binned in p
 - 3 Mass template derived by sampling pairs of p and dE/dx
 - **(**) Use data region with m < 160 GeV (already excluded) for normalisation

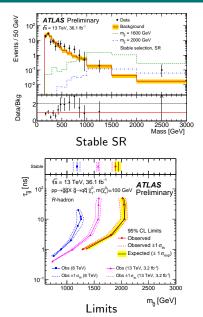

Background estimation


- Sources for large dE/dx: Multiple measurements from tail of dE/dx distribution, overlapping tracks or wrongly assigned hits
- Data-driven background estimation based on two control regions (CRs)
 - **(1)** CR with inverted dE/dx cut $\rightarrow p$ template
 - **2** CR with inverted E_T^{miss} cut $\rightarrow dE/dx$ template binned in p
 - 3 Mass template derived by sampling pairs of p and dE/dx
 - **(**) Use data region with m < 160 GeV (already excluded) for normalisation

• Estimate validated using tracks with 50 GeV GeV:

Results and limits


• SR yields:


SRPredictionDataMetastable $71 \pm 2 \pm 14$ 72Stable $107 \pm 3 \pm 28$ 107

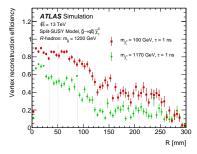
 \bullet Largest local significance of 2.4 σ in stable

SR in bin designed for 600 GeV gluino

Results and limits

• SR yields:

SR	Prediction	Data
Metastable	$71\pm2\pm14$	72
Stable	$107\pm3\pm28$	107


• Largest local significance of 2.4σ in stable SR in bin designed for 600 GeV gluino

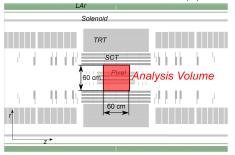
Search for displaced vertices

- Signature: Displaced vertex (DV) in the inner detector with high track multiplicity
- Sensitive to lifetimes of $\mathcal{O}(1 \text{ ps})$ to $\mathcal{O}(10 \text{ ns})$
- $\bullet ~ E_T^{miss} > 250 \, GeV$

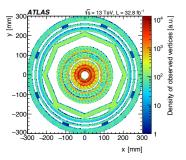
Search for displaced vertices

- Signature: Displaced vertex (DV) in the inner detector with high track multiplicity
- Sensitive to lifetimes of $\mathcal{O}(1 \text{ ps})$ to $\mathcal{O}(10 \text{ ns})$
- $\bullet ~ \mathsf{E}_T^{miss} > 250 \, \text{GeV}$
- Good vertex reconstruction efficiencies due to large radius tracking (LRT):

 \bullet LRT very time consuming \rightarrow Events have to be preselected

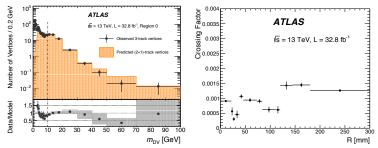

• Displacement to primary vertex (PV): $d_T(PV, DV) > 4 \text{ mm}$

Requirements on DV candidates

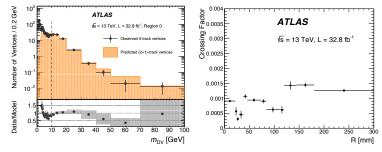

- Displacement to primary vertex (PV): $d_T(PV, DV) > 4 \text{ mm}$
- $m_{\rm DV} > 10 \, {\rm GeV}$

- Displacement to primary vertex (PV): $d_T(PV, DV) > 4 \text{ mm}$
- $m_{\rm DV} > 10 \, {\rm GeV}$
- At least 5 tracks with $p_{\rm T} > 1\,{
 m GeV}$ and $|d_0| > 2\,{
 m mm}$

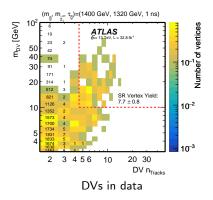
- Displacement to primary vertex (PV): $d_T(PV, DV) > 4 \text{ mm}$
- $m_{\rm DV} > 10 \, {\rm GeV}$
- At least 5 tracks with $p_{\mathrm{T}} > 1\,\mathrm{GeV}$ and $|d_0| > 2\,\mathrm{mm}$
- Fiducial volume: $r_{\rm T} < 300 \, {\rm mm}$ and $|z| < 300 \, {\rm mm}$

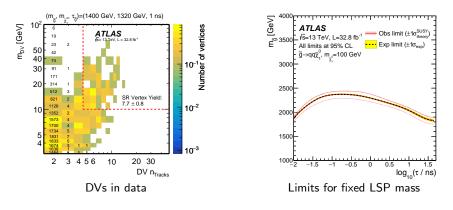


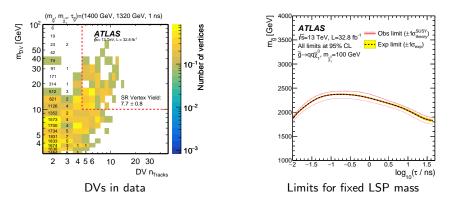
- Displacement to primary vertex (PV): $d_T(PV, DV) > 4 \text{ mm}$
- $m_{\rm DV} > 10 \, {\rm GeV}$
- At least 5 tracks with $p_{\rm T} > 1\,{
 m GeV}$ and $|d_0| > 2\,{
 m mm}$
- Fiducial volume: $r_T < 300 \text{ mm}$ and |z| < 300 mm
- DVs in material regions vetoed using 3D map



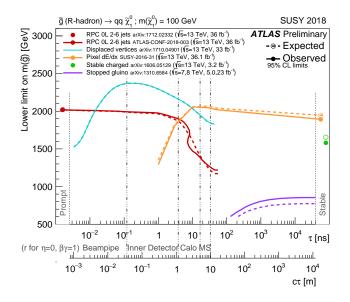
• Hadronic interactions: Extrapolate tail of low mass distribution ($m_{DV} < 10 \text{ GeV}$) which has exponential shape to SR


- Hadronic interactions: Extrapolate tail of low mass distribution ($m_{\rm DV} < 10 \,{\rm GeV}$) which has exponential shape to SR
- Crossings of DVs with tracks:
 - Derive mass template for n-track vertices by adding track to (n-1)-track vertices
 - Normalisation (crossing factor) for n-track vertices derived from CR (3-track vertices)


- Hadronic interactions: Extrapolate tail of low mass distribution ($m_{\rm DV} < 10 \,{\rm GeV}$) which has exponential shape to SR
- Crossings of DVs with tracks:
 - Derive mass template for n-track vertices by adding track to (n-1)-track vertices
 - Normalisation (crossing factor) for n-track vertices derived from CR (3-track vertices)


• Total background = $0.02^{+0.02}_{-0.01}$ events

No DV observed in signal region



- No DV observed in signal region
- $m(\tilde{\chi}_1^0) = 100 \,\text{GeV}$: Best limit on $m(\tilde{g})$ from any LHC search

- No DV observed in signal region
- $m(\tilde{\chi}_1^0) = 100 \,\text{GeV}$: Best limit on $m(\tilde{g})$ from any LHC search
- Parametrised efficiencies available on HepData allowing reinterpretation of results

Summary

