Searches for direct pair production of stops and sbottoms with the ATLAS detector

Christian Lüdtke, on behalf of the ATLAS collaboration 23.7.2018

Albert-Ludwigs-Universität Freiburg

International Conference on Supersymmetry and Unification of Fundamental Interactions UNI FREIBURC

Important in addressing the hierarchy problem

- \rightarrow Light \tilde{t} is favoured
- \blacktriangleright Mass eigenstates $\tilde{t}_{1/2}$ and $\tilde{b}_{1/2}$ are composed of $\tilde{t}_{\rm L/R}$, $\tilde{b}_{\rm L/R}$
 - Large \tilde{t} mixing possible due to large Yukawa coupling

- Different final state for each scenario
- pMSSM models allow to consider both stop and sbottom production: larger signal acceptance

Analyses are classified by 3^{rd} gen. squark flavour and final state

	Channel	Publication				
	Stop 01	JHEP 12 (2017) 085				
	Stop 1L	JHEP 06 (2018) 108				
	Stop 2L	EPJC 77 (2017) 898				
	Stop Z/h	JHEP 08 (2017) 006				
	Stop to charm	arXiv:1805.01649 (to JHEP)				
	Stop to stau	arXiv:1803.10178 (to PRD)				
	Sbottom $b \tilde{\chi}_1^0$	JHEP 11 (2017) 195				
New resul	Sbottom multi-b	ATLAS-CONF-2018-040				
140						

- All analyses use data collected in 2015+2016 ($\mathcal{L}_{int} = 36.1 \text{ fb}^{-1}$)
- ▶ Sbottom multi-*b* first ATLAS 3^{rd} gen. analysis to include also 2017 data ($\mathcal{L}_{int} = 79.8 \text{ fb}^{-1}$)

Stop 0L [JHEP 12 (2017) 085]

- Event selection: Lepton veto, ≥ 4 jets, ≥ 2 *b*-tags, $E_{\rm T}^{\rm miss}$
- Top reconstruction by reclustering jets into large-R jets
 - Categorize events w.r.t. large-R jet mass

Background rejection by stransverse mass (m_{T2})

- Reconstruct two top candidates with p^{top}_{T,i}
- Assume, that p^{miss}_T is result of two neutralinos' transverse momenta q_{T,i}
- $\begin{array}{l} \bullet \quad m_{\mathrm{T2}}^2(\boldsymbol{p}_{\mathrm{T},1}^{\mathrm{top}}, \boldsymbol{p}_{\mathrm{T},2}^{\mathrm{top}}, \boldsymbol{p}_{\mathrm{T},2}^{\mathrm{miss}}) = \\ \min\left[\max\left[m_{\mathrm{T}}^2(\boldsymbol{p}_{\mathrm{T},1}^{\mathrm{top}}, \boldsymbol{q}_{\mathrm{T},1}), m_T^2(\boldsymbol{p}_{\mathrm{T},2}^{\mathrm{top}}, \boldsymbol{q}_{\mathrm{T},2})) \right] \right] \\ \text{under condition } \boldsymbol{q}_{\mathrm{T},1} + \boldsymbol{q}_{\mathrm{T},2} = \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}} \end{array}$

 $\Rightarrow m_{\mathrm{T2}} \leq m_{\tilde{t}_1}$

Stop 1L [JHEP 06 (2018) 108]

- Event selection: 1 e/μ
- Top reconstruction by reclustering
- Reject dileptonic tt by asymmetric stransverse mass (am_{T2})

Stop to charm [arXiv:1805.01649]

- Flavour violation: $\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$
- ▶ Event selection: Lepton veto, ≥ 2 jets, ≥ 1 *c*-tag, $E_{\rm T}^{\rm miss}$
 - $p_{\rm T}^{\rm lead. \; jet} > 250 \; {
 m GeV}$ from ISR required
- Five signal regions to address different mass splittings $m_{\tilde{t}_1} m_{\tilde{\chi}_1^0}$
- Reject had. τ background by $m_{\rm T}^{c-{
 m jets}} = \min_{c-{
 m jets}} \sqrt{2E_{\rm T}^{
 m miss}p_{\rm T}^c \cdot (1 - \cos\Delta\phi(\boldsymbol{p}_{\rm T}^{
 m miss}, \boldsymbol{p}_{\rm T}^c))}$
- ▶ Main background: $Z(\rightarrow \nu\nu) + c/l$, estimated via $Z \rightarrow e^+e^-/\mu^+\mu^-$

Results: \tilde{B} LSP

- Exclusion limits touch stop mass of 1 TeV for light $\tilde{\chi}_1^0$
- Run 2 analyses cover large area of 3-body and 4-body parameter space

Results: \tilde{B}/\tilde{H} LSP

 $\tilde{t}_1, (\tilde{b}_1)$

- Preserves $\Omega h^2 \approx 0.12$
- $m(\tilde{\chi}_2^0/\tilde{\chi}_3^0/\tilde{\chi}_1^{\pm}) \approx m(\tilde{\chi}_1^0) + (20...50) \text{ GeV}$

 \blacktriangleright Consider stop and sbottom production for ${{{ ilde t}_1}}pprox {{{ ilde t}_{
m{L}}}}$

Bino/Higgsino Mix Model: $\tilde{t}_1\tilde{t}_1, \tilde{b}_1\tilde{b}_1$ production, $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 20-50$ GeV, March 2018

Sbottom multi-b [ATLAS-CONF-2018-040]

Target: b
₁ → b
₂⁰, where
₂⁰ → h
₁⁰
 All BR's = 1, except BR(h → bb) = 0.58 (SM-like)

Sbottom multi-b: Signal Region A

- ► ≥ 6 jets, ≥ 4 *b*-tags, $E_{\rm T}^{\rm miss} > 250 \; {\rm GeV}$
- Higgs-boson reconstruction
 - ▶ Remove pair of *b*-jets with maximum $\Delta R \leftarrow$ Sbottom decay
 - Select pair of *b*-jets with minimum ∆*R* ← Higgs decay
 - ► Accept, if m(b, b) > 80 GeV

- 3 statistically independent bins in m_{eff}: SRA-L/M/H
 - $m_{\text{eff}} = \sum_{i=1}^{N_{\text{jets}}} p_{\text{T},i} + E_{\text{T}}^{\text{miss}}$, main discriminating variable

SRB

- Optimised for small $\Delta m(\tilde{b}_1, \tilde{\chi}_1^0)$ and $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}$
- ► ≥ 5 jets, $\geq 4 b$ -tags, $E_{\rm T}^{\rm miss} > 300 {
 m GeV}$
- Require ISR jet
- Higgs candidate reconstruction
 - Find combination, that minimizes $\max[\Delta R(b_1, b_2), \Delta R(b_3, b_4)]$
 - Take average mass of both candidates m(h₁, h₂)_{avg}
 - ► Accept, if 50 < m(h₁, h₂)_{avg} < 140 GeV</p>
- ▶ $m_{\text{eff}} > 1 \text{ TeV}$

SRC

- Optimised for small $\Delta m(\tilde{b}_1, \tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^0) = 60 \text{ GeV}$
- ► ≥ 4 jets, $\geq 3 b$ -tags, $E_{\rm T}^{\rm miss} > 250 {\rm ~GeV}$
- Use object-based $E_{\rm T}^{\rm miss}$ significance

Variable	SRC25	SRC27	SRC30	SRC32		
N_{leptons} (baseline)		=	0			
N _{jets}		2	4			
N _{b-jets}	≥ 3					
E_T^{miss} [GeV]	> 250					
$\min \Delta \phi(\text{jet}_{1-4}, \mathbf{p}_T^{\text{miss}})$ [rad]	> 0.4					
S	> 25	> 27	> 30	> 32		

Sbottom multi-*b*: S (E_{T}^{miss} significance)

- Previously: $S = E_{\rm T}^{\rm miss} / \sqrt{\sum E_{\rm T}}$ or $E_{\rm T}^{\rm miss} / \sqrt{H_{\rm T}}$
- New in ATLAS: Determine S based on expected resolution of each object

$$\blacktriangleright \ \mathcal{S}: \text{Defined by } \mathcal{S}^2 = 2\ln \frac{\max_{\boldsymbol{p}_{\mathrm{T}}^{\mathrm{inv}} \neq \boldsymbol{0}} \mathcal{L}(\boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{inv}})}{\max_{\boldsymbol{p}_{\mathrm{T}}^{\mathrm{inv}} = \boldsymbol{0}} \mathcal{L}(\boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{inv}})} \qquad \qquad \text{Details in:} \\ \text{ATLAS-CONF-2018-038}$$

For more information, see Marco Valente's talk on Thursday

Sbottom multi-b: Results

No significant excess observed

Sbottom multi-*b*: Interpretations

• Significant improvement of constraints on \tilde{b}_1 mass

- Broad search programme carried out with $36~{\rm fb}^{-1}$
- New sbottom search with 80 fb^{-1}
- No significant excess observed so far
- Severly tightened constraints on sbottom masses
- Interpretation of stop search results in pMSSM models

	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{k}_1^0 / t \tilde{k}_1^\pm$		Multiple Multiple Multiple		36.1 36.1 36.1	$\tilde{b}_1 \\ \tilde{b}_1 \\ \tilde{b}_1 \\ \tilde{b}_1$		Forbidden	Forbidden Forbidden	0.9 0.58-0.82 0.7	$\begin{array}{c} m(\tilde{c}_{1}^{2})\!=\!\!300 \; \text{GeV}, \text{BR}(\delta \tilde{c}_{1}^{2})\!=\!\!1\\ m(\tilde{c}_{1}^{0})\!=\!\!300 \; \text{GeV}, \text{BR}(\delta \tilde{c}_{1}^{0})\!=\!\text{BR}(\delta \tilde{c}_{1}^{+})\!=\!\!0.5\\ m(\tilde{c}_{1}^{0})\!=\!\!200 \; \text{GeV}, m(\tilde{c}_{1}^{+})\!=\!300 \; \text{GeV}, \text{BR}(\delta \tilde{c}_{1}^{+})\!=\!1\end{array}$
arks tion	$\tilde{b}_1\tilde{b}_1,\tilde{t}_1\tilde{t}_1,M_2=2\times M_1$		Multiple Multiple		36.1 36.1	$\hat{t}_1 \\ \hat{t}_1$	Forbidden			0.7	m(\tilde{t}_1^0)=60 GeV m(\tilde{t}_1^0)=200 GeV
ien. squs	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{k}_1^0 \text{ or } t \tilde{k}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{H} LSP$	0-2 e, µ	0-2 jets/1-2 k Multiple Multiple	> Yes	36.1 36.1 36.1	$\frac{\tilde{t}_1}{\tilde{t}_1}$ \tilde{t}_1		Forbidden		1.0 0.4-0.9 0.6-0.8	$m[\tilde{\chi}_{1}^{0}]=1 \text{ GeV}$ $m[\tilde{\chi}_{1}^{0}]=150 \text{ GeV}, m[\tilde{\chi}_{1}^{+}]-m[\tilde{\chi}_{1}^{0}]=5 \text{ GeV}, \tilde{t}_{1} \approx \tilde{t}_{L}$ $m[\tilde{\chi}_{1}^{0}]=300 \text{ GeV}, m[\tilde{\chi}_{1}^{+}]=m[\tilde{\chi}_{1}^{0}]=5 \text{ GeV}, \tilde{t}_{1} \approx \tilde{t}_{L}$
S rd 9	τ ₁ τ ₁ , Well-Tempered LSP		Multiple		36.1	\tilde{t}_1				0.48-0.84	$m[\hat{x}_{1}^{0}] = 150 \text{ GeV}, m[\hat{x}_{1}^{+}] \cdot m[\hat{x}_{1}^{0}] = 5 \text{ GeV}, \tilde{t}_{1} \approx \tilde{t}_{L}$
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2c	Yes	36.1	11 7			0.46	0.85	m(ž ¹)=0 GeV
		0	mono-jet	Yes	36.1	\tilde{t}_1			0.43		$m(r_1, z) - m(\varepsilon_1) = 50 \text{ GeV}$ $m(r_1, z) - m(\varepsilon_1^2) = 5 \text{ GeV}$
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 e, µ	4 <i>b</i>	Yes	36.1	ī2				0.32-0.88	$m(\tilde{t}_{1}^{0})=0$ GeV, $m(\tilde{r}_{1})-m(\tilde{t}_{1}^{0})=180$ GeV

Backup

Stop to stau [arXiv:1803.10178]

- Sparticles: \tilde{t}_1 , $\tilde{\tau}$ (even mix of $\tilde{\tau}_L$, $\tilde{\tau}_R$), \tilde{G} (massless)
- Event selection: 2 $au_{\rm had.}$ (HH) or 1 e/μ + 1 $au_{\rm had.}$ (LH)
- Reject tt by using mT2
- Main backgrounds
 - HH: Fake τ , estimated in control region
 - LH: Fake τ , data-driven estimate (*fake factor method*)

Stop scenarios: \tilde{B} LSP & \tilde{B}/\tilde{H} LSP

\tilde{B} LSP scenario

- $\blacktriangleright \tilde{\chi}_1^0 = \tilde{B}$
- $M_2, M_3 \gg M_1$, other sparticles decoupled
- $\mathsf{BR}(\tilde{t}_1 \to t \tilde{\chi}_1^0) = 1 \Rightarrow \tilde{t}_1 \approx \tilde{t}_{\mathrm{L}}$

$\begin{array}{c|c} \tilde{B}/\tilde{H} \text{ LSP} \\ \hline \\ \hline \\ \tilde{t}_1,(\tilde{b}_1) \\ \hline \\ \end{array} \end{array} \xrightarrow{ pMSSM model } & \blacktriangleright M_{Q_3L} \text{ vs. } M_1 \\ \hline \\ \text{Motivated by DM relic } \\ \text{density} \\ \hline \\ \tilde{t}_1 \rightarrow t \tilde{\chi}_{1/2/3}^0 \text{ and } \\ \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \hline \\ \end{array} \\ \hline \\ \hline \\ \\ \tilde{t}_1^{\pm}, \tilde{\chi}_2^0, \tilde{\chi}_3^0 \\ \hline \\ \\ \hline \\ \\ \tilde{t}_1^0 \rightarrow b \tilde{\chi}_1^0 \\ \hline \\ \\ \hline \\ \\ M_1 \approx -\mu, \text{ satisfies } \\ 0.10 < \Omega h^2 < 0.12 \\ \hline \\ \\ \hline \\ \\ M_{t_R} \text{ vs. } M_1 \\ \hline \\ \\ \hline \\ \\ Mostly \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \\ \hline \\ \end{array}$

Stop scenarios: \tilde{H} LSP & \tilde{W} NLSP

\tilde{W} NLSP scenario

- Motivated by grand unification
- pMSSM model
- $\blacktriangleright M_2 = 2 \cdot M_1$
- Distinguish $\mu < 0$ and $\mu > 0$
- Event signatures involve strongly boosted b-jets

	SR1	SR2	SR3	SR4	SR5				
Trigger	$E_{\rm T}^{\rm miss}$ triggers								
Leptons	$0 e$ AND 0μ								
$E_{\rm T}^{\rm miss}$ [GeV]		>	500						
$\Delta \phi_{\min}(\text{jet}, \boldsymbol{E}_{T}^{\text{miss}}) \text{ [rad]}$	> 0.4								
N_{c-jets}	≥ 1								
Njets	≥ 2	≥ 3	≥ 3	≥ 3	≥ 3				
Leading jet c-tag veto	yes	yes	yes	yes	no				
$p_{\rm T}^{j_1}$ [GeV]	> 250	> 250	> 250	> 250	> 300				
$p_{\mathrm{T}}^{j_2}$ [GeV]	-	_	> 100	> 140	> 200				
$p_{\rm T}^{j_3}$ [GeV]	-	-	> 80	> 120	> 150				
$p_{\rm T}^{\tilde{c}_1}$ [GeV]	< 100	> 60	> 80	> 100	> 150				
$m_{\rm T}^c$ [GeV]	∈ (120, 250)	∈ (120, 250)	∈ (175, 400)	> 200	> 400				

Variable	SRA	SRA-L	SRA-M	SRA-H		
$N_{\rm leptons}$ (baseline)	= 0					
$N_{ m jets}$	≥ 6					
$N_{ m b-jets}$	≥ 4					
$E_{\rm T}^{\rm miss}$ [GeV]	> 250					
$\min \Delta \phi(\text{jet}_{1-4}, \mathbf{p}_{\text{T}}^{\text{miss}}) \text{ [rad]}$	> 0.4					
τ veto	Yes					
$p_{\rm T}(b_1) ~[{\rm GeV}]$	> 200					
$\Delta R_{\max}(b,b)$	į 2.5					
$\Delta R_{\max-\min}(b,b)$	i 2.5					
$m(h_{\rm cand})$ [GeV]		>	· 80			
$m_{\rm eff}$ [TeV]	> 1.0	$\in [1.0, 1.2]$	$\in [1.2, 1.5]$	> 1.5		

	SRA	SRA-L	SRA-M	SRA-H	SRB
Observed events	27	7	12	8	4
Fitted SM bkg events	22.8 ± 3.2	5.8 ± 1.5	9.5 ± 2.0	7.5 ± 1.4	4.0 ± 1.1
tī	15.3 ± 2.7	4.5 ± 1.4	6.3 ± 1.7	4.7 ± 1.3	3.5 ± 1.2
Z+jets	1.5 ± 0.9	0.3 ± 0.2	0.5 ± 0.2	0.7 ± 0.4	0.09 ± 0.08
Single-top	3.1 ± 0.8	0.4 ± 0.3	1.4 ± 0.5	1.3 ± 0.3	$0.24^{+0.26}_{-0.24}$
$t\bar{t} + W/Z$	1.1 ± 0.2	0.2 ± 0.1	0.5 ± 0.2	0.4 ± 0.2	0.09 ± 0.07
$t\bar{t} + h$	1.3 ± 0.2	0.4 ± 0.1	0.5 ± 0.1	0.3 ± 0.1	0.11 ± 0.03
W+jets	0.4 ± 0.3	-	$0.28^{+0.33}_{-0.28}$	0.09 ± 0.02	_
Diboson	0.10 ± 0.05	$0.00^{+0.02}_{-0.00}$	0.10 ± 0.04	-	_
	SRC25		SRC27	SRC30	SRC32
Observed events	43		24	6	1
Fitted SM bkg events	39.8 ± 3.9		19.1 ± 2.3	8.1 ± 1.5	3.3 ± 0.7
tī	13.1 ± 2.6		4.7 ± 0.9	1.2 ± 0.3	0.4 ± 0.1
Z+jets	11.3 ± 3.0		6.3 ± 1.8	3.1 ± 0.9	1.2 ± 0.4
Single-top	4.3 ± 0.5		2.2 ± 0.2	1.1 ± 0.3	0.3 ± 0.1
$t\bar{t} + W/Z$	5.0 ± 1.6		2.9 ± 0.9	1.0 ± 0.4	0.5 ± 0.2
$t\bar{t} + h$	0.33 ± 0.05		0.18 ± 0.03	$0.01^{+0.02}_{-0.01}$	$0.01^{+0.01}_{-0.01}$
W+jets	4.1 ± 0.4		1.7 ± 0.3	1.0 ± 0.3	0.5 ± 0.1
Diboson	1.6 ± 0.4		1.2 ± 0.2	0.6 ± 0.2	0.4 ± 0.3

Sbottom multi-b: background validation

