Hunting for squarks and gluinos in less conventional scenarios with ATLAS

Mike Nelson, University of Oxford, on behalf of the ATLAS Collaboration

michael.nelson@physics.ox.ac.uk

√s=13 TeV, 36.1 fb⁻¹

July 2018

√s=15 TeV,

Let's start with a picture of more "conventional" gluino production ...

First, A Picture of "Conventional" Supersymmetry (SUSY)

Common Selection
Lepton veto

Many central jets: $|\eta| < 2.0$

Key variable: MET-significance:

$$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$$

$$H_{\rm T} = \sum p_{\rm T, jet}$$

Two analysis streams

Flavour: select b-jets

MJSigma: makes use of jet reclustering

$$M_J^{\Sigma} = \sum_j m_j^{R=1.0}$$

Can we use existing jet multiplicity and E_{T}^{miss} techniques to extend sensitivity to different gluino/squark production scenarios?

A Picture of *R*-parity-violating SUSY

- Introduce a baryon number-violating coupling, λ"_{ijk} (i,j,k = quark generation indices).
- RPV => LSP decays to SM particles, with a decay probability characterised by λ"_{ijk}
- Another decay cascade => many hadronic jets in the final state.
- Range of LSP lifetimes possible, e.g. long-lived LSP => search for displaced tracks in the inner detector.

$$W_{RPV} = \lambda_{ijk} L_i L_j e_K^c + \lambda'_{ijk} Q_i L_j d_k^c + \lambda''_{ijk} u_i^c d_j^c d_k^c + m_i L_i H_u$$

Lepton number-violating

Baryon number-violating SUSY 2018

Example: 7 — 11 Jets (RPC) Sensitivity to PV SUSY (2015 + 2016)

- The 7 11 jets analysis is sensitive to such a model because its SRs contain a small amount of real E_T^{miss}
- More in JHEP12 (2017) 034

 More sensitive than most other strong-SUSYmotivated analyses, which have an explicit E_T^{miss} cut.

The RPV Programme at ATLAS

Analysis	Data	Paper	
RPV 1L (multi-jets)	13 TeV, 36.1 fb ⁻¹	1704.08493	
RPV 0L (multi-jets)	13 TeV, 36.1 fb ⁻¹	1804.03568	
2 same-sign/3 leptons	13 TeV, 36.1 fb ⁻¹	1706.03731	
2 x 2 jet resonance search	13 TeV, 36.1 fb ⁻¹	1710.07171	
RPV 4L	13 TeV, 36.1 fb ⁻¹	1804.03602	
Stop B — L	13 TeV, 36.1 fb ⁻¹	1710.05544	

RPV Search with Multi-Jets

UNIVERSITY OF OXFORD

- RPV models with **gluino direct/cascade decays** into jets. Search in 2015 + 2016 ATLAS data.
- Construct signal regions from trimmed, R = 1.0 jets (4+, 5+), associated *b*-jets, and centrally-produced jets, $|\Delta \eta_{12}| < 1.4$.

RPV Search with Multi-Jets

- No statistically significant excesses in 4+ or 5+ R=1.0 jet signal regions, with/without b- tagging requirements.
- Direct decay: signals as small as 0.011 0.8 pb excluded at 95 % CL.
- Cascade decay: excluding gluinos up to masses of 1875 GeV at 95 % CL.

RPV Search with Multi-Leptons

- Search for RPV lepton-number-violating decays. See also Matt Klein's talk and Zinonas Zinonos' poster!
- Inclusive search for decays to all three leptonic generations (12k and i33).

Scenario	$ ilde{\mathcal{X}}_1^0$ branching ratios			
_	$e^{+}e^{-}v$ (1/4) $e^{\pm}\tau^{\mp}v$ (1/4)	•		

- Inclusive 4L0T, 3L1T, 2L2T signal regions (L = light lepton, T = tau).
- Same-flavour-opposite-sign lepton pairs with dilepton mass around the Z peak are vetoed.
- Multiple high-energy leptons => larger effective mass in signal,

$$m_{\text{eff}} = E_{\text{T}}^{\text{miss}} + \sum p_{\text{T}}^{\text{leptons}} + \sum p_{\text{T}}^{(>40 \text{ GeV}),\text{jets}}$$

11

RPV Search with Multi-Leptons

- First 2015 + 2016 limits on both the 12k and i33 lepton-number-violating decays in gluino production.
- Gluino masses (i33 coupling) excluded up to 2.25 TeV with 36 fb⁻¹ of ATLAS data.

Can we connect these RPC—RPV Models?

- Most ATLAS SUSY analyses "optimised" to search for RPV or RPC SUSY.
- Can we explore sensitivity to both sets of models ?

- Most ATLAS SUSY analyses "optimised" to search for RPV or RPC SUSY.
- Can we explore sensitivity to both sets of models ?

The RPC-meets-RPV "Continuum"

RPC-SUSY

RPV-SUSY

Distance LSP travels from beam line in ATLAS, L

0

- Idea: reinterpret existing 36 fb⁻¹ SUSY analyses in the RPC-RPV "continuum" λ"ijk
- Three types of "simplified" SUSY models considered: Gqq, Gtt, stop
- Full glory here: ATLAS-CONF-2018-003. See also Veronika Magerl's and Simone Amoroso's posters!

$$L(cm) = \frac{0.9\beta\gamma}{\lambda''^2} \left(\frac{m(\tilde{q})}{100 \text{ GeV}}\right)^4 \left(\frac{1 \text{ GeV}}{m(\tilde{\chi}_1^0)}\right)^5$$

For bino-like neutralinos

RPC-meets-RPV Kinematics

 Let's understand the kinematics of the various RPC-RPV signals to see if existing squark/gluino searches could be sensitive ...

Turn on RPV coupling => jet multiplicity increases

 $E_{\text{T}}^{\text{miss}}$ reduction as LSP lifetime falls. E.g. 7 — 11 jets has no explicit $E_{\text{T}}^{\text{miss}}$ cut

Gluino Sensitivity: Gqq

- Observed and expected limits on gluino mass, as a function of LSP lifetime, and the equivalent RPV coupling strength.
- 0L 2-6 sets strongest limits.
- Less competitive limits set by 7 — 11 jets, given moderate jet multiplicity of the signal.
- Larger coupling => reduced LSP lifetime => E_T^{miss} reduced, and sensitivity falls.

Gluino Sensitivity: Gtt

- Observed and expected limits on gluino mass, as a function of LSP lifetime, gluino branching ratio, and the equivalent RPV coupling strength.
- Sets consistent limits across the RPV coupling.
- Use of jet reclustering and b-tagging techniques, and moderate E_T^{miss}.

Gluino Sensitivity: Gtt

ected ass, as CSP lifetime, ranching ratio, The equivalent RPV coupling strength.

- **Sets consistent limits** across the RPV
- Use of jet reclustering techniques, and moderate E_{T}^{miss} .

Full summary of results here

2 TeV

Summary

- It is possible to reinterpret searches for "conventional", RPC SUSY in models of RPV SUSY.
- In addition ATLAS also has very nice new results for dedicated RPV searches since SUSY2017 last December.
- RPC and RPV are connected by the RPV coupling strength => can investigate the analysis sensitivity to the RPV SUSY continuum.
- In general, conventional and less conventional searches for gluinos are pushing limits on the gluino mass above 2.0 TeV.
- Limits on squarks are being pushed well above 1.2 TeV, and up to 1.8 TeV in the latest results (no time for details today, unfortunately!)

Backup

		$n_{\rm jet} \ (p_{\rm T} > 200 \ {\rm GeV})$	b-tag	$p_{\mathrm{T,1}}$	$ \Delta \eta_{12} $	$M_{ m J}^{\Sigma}$
$\overline{\text{CR}}$	3jCR	=3	-	-	-	_
UDR	UDR1	=2	-	> 400 GeV	-	_
ODI	UDR2	=4	-	< 400 GeV	-	-
	4jVR	≥ 4	-	> 400 GeV	> 1.4	_
VR	$5 \mathrm{jVR}$	≥ 5	-	-	> 1.4	-
VI	4j V Rb	≥ 4	Yes	> 400 GeV	> 1.4	-
	5j V Rb	≥ 5	Yes	-	> 1.4	-
	4jSR	≥ 4	-	> 400 GeV	< 1.4	> 1.0 TeV
SR	5j SR	≥ 5	-	-	< 1.4	> 0.8 TeV
	4jSRb	≥ 4	Yes	> 400 GeV	< 1.4	> 1.0 TeV
	$5jSRb_{-}1$	≥ 5	Yes	-	< 1.4	> 0.8 TeV
	$5jSRb_2$	≥ 5	Yes	-	< 1.4	> 0.6 TeV

RPV Search with Multi-Jets: Template Method

- Template == Calculated jet mass PDFs, parameterised in jet p_T and $I\eta I$. Create template from a controlled sample of background events.
- Jet mass template used to generate a random mass, gradually building up a background $M_{\rm J}^{\rm \Sigma}$ distribution of **randomised jet masses**.

The predicted M_J^{Σ} distribution is mornal (signal contamination negligible to statistical uncertainty). The predicted M_J^{Σ} distribution is normalised to the observed 200 TeV < M_J^{Σ} < 600 TeV

Region	$N(e,\mu)$	$N(\tau_{ m had-vis})$	$p_{\mathrm{T}}\left(au_{\mathrm{had ext{-}vis}} ight)$	Z boson	Selection	Target
SR0A	≥ 4	= 0	> 20 GeV	veto	$m_{\text{eff}} > 600 \text{GeV}$	General
SR0B	≥ 4	= 0	> 20 GeV	veto	$m_{\text{eff}} > 1100 \text{GeV}$	RPV <i>LLĒ</i> 12 <i>k</i>
SR0C	≥ 4	= 0	> 20 GeV	require 1st & 2nd require 1st & 2nd	$E_{\mathrm{T}}^{\mathrm{miss}} > 50 \mathrm{GeV}$	higgsino GGM
SR0D	≥ 4	= 0	> 20 GeV		$E_{\mathrm{T}}^{\mathrm{miss}} > 100 \mathrm{GeV}$	higgsino GGM
SR1	= 3	≥ 1	> 30 GeV	veto	$m_{\text{eff}} > 700 \text{GeV}$	RPV <i>LLĒi</i> 33
SR2	= 2	≥ 2	> 30 GeV	veto	$m_{\text{eff}} > 650 \text{GeV}$	RPV <i>LLĒi</i> 33

Reducible Estimation for	Control Region	$N(e, \mu)$ signal	$N(e, \mu)$ loose	$N(au_{ ext{had-vis}})$ signal	$N(au_{ ext{had-vis}})$ loose
4 <i>L</i> 0 <i>T</i>	CR1_LLLI	= 3	≥ 1	= 0	≥ 0
	CR2_LLII	= 2	≥ 2	= 0	≥ 0
3L1T	CR1_LLLt	= 3	= 0	= 0	≥ 1
	CR1_LLTI	= 2	= 1	≥ 1	≥ 0
	CR2_LLIt	= 2	= 1	= 0	≥ 1
2L2T	CR1_LLTt	= 2	= 0	= 1	≥ 1
	CR2_LLtt	= 2	= 0	= 0	≥ 2

And now, the latest from the "less conventional" squark production searches

Catching Squarks and Gluinos with Taus

- Gauge-mediated symmetry breaking (GMSB)
 model => scalar lepton is preferentially a stau for high tanβ. More details in SUSY-2016-03
- Dedicated 1 and 2τ signal regions, including optimisation for the compressed region, and control region for tau fakes from W decay.

Catching Squarks and Gluinos with Taus

- Pushing gluino sensitivity to 2.0 TeV!
- Limit calculated from the combination of the 1 and 2τ channels.

Catching Squarks and Gluinos with Taus

- Limit calculated from the combination of the 1 and 2τ channels.
- Significantly extending exclusions on the SUSY-breaking mass scale, A, (assuming GMSB) for different squark and gluino masses (orange and grey dotted lines).

Catching Squarks with a Z edge

- $\Delta m_{\chi} < m_{Z}$: m_{\parallel} distribution can have a **kinematic endpoint ("edge")** at Δm_{χ}
- Search for an "edge" by scanning in the $Z \rightarrow ee$ or $\mu\mu$ invariant mass, using mass windows above and below the Z peak.
- More in SUSY-2016-33.

Catching Squarks with a Z edge

 Significant gain in sensitivity to squark masses above 1.2 TeV, with the full 2015 + 2016 ATLAS dataset.

Let's take jet multiplicity to the extreme ...

13-jet event reconstructed in the ATLAS calorimeter!

A Picture of "Conventional" Supersymmetry (SUSY)

- Gluino (spin-1/2 SUSY partner of the gluon) production at the LHC.
- Decay cascade into SUSY and Standard Model (SM) particles.
- Cascade produces final state quarks => hadronization into many jets.
- Lightest SUSY particle (LSP) passes through ATLAS, undetected => measure real missing transverse momentum (E_T^{miss}).

Backgrounds and How to Control Them

Major backgrounds:

- •Multi-jet background: QCD multi-jets and fully-hadronic top production.
- Leptonic backgrounds.

Large multi-jet background at moderate E_T^{miss} significance.

Sufficiently large E_T^{miss} significance is our hunting ground for new physics.

The multi-jets background must be estimated using a fully data-driven approach ... the template method.

Backgrounds and How to Control Them

CRs for two largest Monte Carlo backgrounds: **W** +jets and top production + jets, constructed by requiring zero and one inclusive **b**-jet respectively.

For each N_{jet} SR of jet multiplicity N_{jet} , an N_{jet} -1 CR is calculated for the W+jets and hadronic top backgrounds.

These CRs provide normalisations to the yields from the largest MC backgrounds.

Michael E. Nelson, Oxford

The Template Method

Fully data-driven multi-jet background estimation.

E_T^{miss} significance shape is **approximately invariant** under different (high) jet multiplicities.

Calculate the multi-jet contribution in the 6-jet, E_T^{miss} significance > 5 GeV^{1/2} template region.

Rescale the shape in each of the signal regions by considering the relative change in size of the multi-jet dominated peak at *E*_T^{miss} significance < 1.5 GeV^{1/2}.

The Template Method

Fully data-driven multi-jet background estimation.

E_T^{miss} significance shape is **approximately invariant** under different (high) jet multiplicities.

Calculate the multi-jet contribution in the 6-jet, E_T^{miss} significance > 5 GeV^{1/2} template region.

Rescale the shape in each of the signal regions by considering the relative change METSig in size of the multi-jet dominated peak at *E*_T^{miss} significance < 1.5 GeV^{1/2}.

The Template Method

Fully data-driven multi-jet background estimation.

E_T^{miss} significance shape is **approximately invariant** under different (high) jet multiplicities.

Calculate the multi-jet contribution in the 6-jet, E_T^{miss} significance > 5 GeV^{1/2} template region.

Rescale the shape in each of the signal regions by considering the relative change METSig in size of the multi-jet dominated peak at *E*_T^{miss} significance < 1.5 GeV^{1/2}.

Criterion	Heavy-flavour channel Jet mass channel				
Jet $ \eta $	< 2.0				
Jet p_{T} N_{jet}	>50 GeV > 80 GeV > 50 GeV $\geq 8, 9, 10, 11$ $\geq 7, 8, 9$ $\geq 8, 9, 10$				
Lepton veto	No preselected e or μ after overlap removal				
b-jet selection Large-R-jet selection	$p_{\mathrm{T}} > 50 \; \mathrm{GeV} \; \mathrm{and} \; \eta < 2.0$ $p_{\mathrm{T}} > 100 \; \mathrm{GeV} \; \mathrm{and} \; \eta < 1.5$				
$N_{b ext{-} ext{tag}} \ M_{ ext{J}}^{\Sigma}$	$ \geq 0, 1, 2 $ ≥ 0 $\geq 340, 500 \mathrm{GeV} $				
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$	$> 5 \mathrm{GeV}^{1/2}$				

Signal regions (SRs) are constructed from 7, 8, 9, 10, and 11 inclusive jets (leptons vetoed). Two channels:

• "Heavy-flavour channel": 0, 1, and 2 inclusive b-jets are required.

Criterion	Heavy-flavour	Jet mass channel			
Jet $ \eta $	< 2.0				
$N_{ m jet}$	l I	> 80 GeV $\geq 7, 8, 9$	> 50 GeV $\ge 8, 9, 10$		
Lepton veto	No preselected e or μ after overlap removal				
b-jet selection Large-R-jet selection	$p_{\rm T} > 50~{ m GeV}$ and $ \eta < 2.0$ $p_{\rm T} > 100~{ m GeV}$ and $ \eta < 1.5$				
$N_{b ext{-} ext{tag}} \ M_{ ext{J}}^{\Sigma}$	$ \geq 0, 1, 2 $ $ \geq 0 $	≥ 0 $\geq 340,500 \mathrm{GeV}$			
$E_{ m T}^{ m miss}/\sqrt{H_{ m T}}$		$> 5 \mathrm{GeV}^1$	/2		

Signal regions (SRs) are constructed from 7, 8, 9, 10, and 11 inclusive jets (leptons vetoed). Two channels:

•"Jet mass channel": Jets are reclustered into larger fat-jets, uses the total fat-jet mass per event (M_J^{Σ}) .

Results with 36.1 fb⁻¹ (2015 + 2016)

Yields in each of the 27 signal regions — excellent data/(MC + template) prediction.

The signal yields in each SR using 2015 + 2016 LHC data.

Smoking gun for this new physics search: large SR excesses at moderate E_T^{miss} significance coming from SUSY particle production.

No statistically significant excesses are observed — use this to understand sensitivity to existing SUSY models.

Sensitivity to RPC SUSY

95 % confidence level (CL) exclusion limits are set on different strongly-produced SUSY models: three *R*-parity conserving (pMSSM above), and a fourth model which is *R*-parity violating (RPV).

Sensitivity to gluino masses extended up to ~ 1.7 TeV.

Sensitivity to RPC SUSY

95 % confidence level (CL) exclusion limits are set on different strongly-produced SUSY models: three *R*-parity conserving (2-step above), and a fourth model which is *R*-parity violating (RPV).

Sensitivity to gluino masses extended up to 1.8 TeV.

- In the minimal supersymmetric standard model (MSSM), baryon and lepton number are no longer conserved by all couplings in the theory.
- We can "force" such B and L-violating couplings to be forbidden by imposing the conservation of the R-parity quantum number, defined:

 $P_{R} = (-1)^{3(B-L)} + 2s$ Baryon number

Lepton number

• SUSY particles: $P_R = -1$

- SM particles: $P_R = +1$
- Our "conventional" SUSY is R-parity conserving (RPC) => LSP is stable.
- Interpretation of stable LSP: dark matter.

RPC-meets-RPV Kinematics

 Let's understand the kinematics of the various RPC-RPV signals, to see if existing squark/gluino searches could be sensitive ...

Turn on RPV coupling => jet multiplicity increases

b-tagging multiplicity "increases".
Optimal "b-tagging" sweet spot at 0.01 ns.

Model name	Gqq	Gtt	Stop	R-hadron	
Coupling	$\lambda_{112}^{\prime\prime}$	$\lambda_{323}^{\prime\prime}$	$\lambda_{323}^{\prime\prime}$	_	
	$\tilde{g} \to qq\tilde{\chi}_1^0$	$\tilde{g} \to tt\tilde{\chi}_1^0$	$\tilde{t}_1 \to t \tilde{\chi}_1^0$		
Decay	$\tilde{g} \to qq\tilde{\chi}_1^0 (\to qqq)$	$\tilde{g} \to tt\tilde{\chi}_1^0 (\to tbs)$	$\tilde{t}_1 \to t\tilde{\chi}_1^0 (\to tbs)$	$\tilde{g} \to q q \tilde{\chi}_1^0$	
	$\tilde{g} o qqq$	$\tilde{g} \to tbs$	$\tilde{t}_1 \to bs$		
Other colored	$m(\tilde{q}) = 3 \text{ TeV}$	$m(\tilde{q}) = 5 \text{ TeV}$	$m(\tilde{q}, \tilde{g}) = 3 \text{ TeV}$	$m(\tilde{q}, \tilde{t}, \tilde{b}) \approx \text{PeV}$	
sparticle masses	$m(\tilde{t}, \tilde{b}) = 5 \text{ TeV}$	$m(\tilde{t}, \tilde{b}) = 2.4 \text{ TeV}$	$m(\tilde{t}_2, \tilde{b}) = 3 \text{ TeV}$	$m(q,\iota,o) \approx \text{rev}$	
LSP	The LSP	$m(\tilde{\chi}_1^0) = 100 \text{ GeV}$			

Main Analysis Characteristics

Analysis name	Leptons	${\rm Jets} \ / \ b{\rm -tags}$	$E_{\rm T}^{\rm miss}$ requirement	Representative cuts	Model targeted	
RPC 0-lepton, 2-6 jets [53]	0	≥ 4 / −	$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}} > 0.2$	$m_{\rm eff} > 3000 \; {\rm GeV}$	Gqq, R -hadron	
RPC 0-lepton, 7-11 jets [55]	0	≥ 7 / -	$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}} > 5 \mathrm{~GeV}^{1/2}$	_	Gqq	
		\geq 11 / \geq 2			Gtt	
RPC multi-b [56]	0	≥ 7 / ≥ 3	$E_{\mathrm{T}}^{\mathrm{miss}} > 350 \mathrm{GeV}$	$m_{\rm eff} > 2600 \; {\rm GeV}$	Gtt	
	1	$\geq 5 / \geq 3$	$E_{\mathrm{T}}^{\mathrm{miss}} > 500 \; \mathrm{GeV}$	$m_{\mathrm{eff}} > 2200 \; \mathrm{GeV}$		
RPV 1-lepton [57]	1	$\geq 10 / \geq 4$	_	_	Gtt, stop	
RPC Stop 0-lepton [58]	0	≥ 4 / ≥ 2	$E_{\mathrm{T}}^{\mathrm{miss}} > 400 \; \mathrm{GeV}$	$m_{\rm jet, R=1.2} > 120 \text{ GeV}$	stop	
RPC Stop 1-lepton [59]	1	≥ 4 / ≥ 1	$E_{\mathrm{T}}^{\mathrm{miss}} > 250 \mathrm{GeV}$	$m_T > 160 \text{ GeV}$	stop	
RPC and RPV same-sign and three leptons [60]	2 SS or 3	$\geq 6 / \geq 2$	$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}} \dot{\iota} 0.15$	$m_{\rm eff} > 1800~{\rm GeV}$	Gtt, stop	
		$\geq 6 / \geq 2$	_	$m_{\mathrm{eff}} > 2000 \; \mathrm{GeV}$	Gtt, stop	
RPV stop dijet pairs [61]	_	≥ 4 / ≥ 2	_	$\mathcal{A} < 0.05$	stop	
Dijet and TLA [62,63]	_	≥ 2 / $-$	_	$ y^* < 0.6$	stop	