ATLAS Searches for Diboson Resonances

Gabriele Chiodini - INFN Lecce and Università del Salento on behalf of ATLAS collaboration

SUSY2018 Barcelona, July 23-27, 2018 International Conference on Supersymmetry and Unification of Fundamental Interactions 2018

Outline and motivations

The most compelling argument of New Physics at TeV scale is the extreme fine tuning of quantum corrections involving t, γ , W, Z and H in order to keep the observed Higgs mass close to the electroweak scale.

New resonances coupled to γ/W/Z/H generally expected at multi-TeV scale. The Higgs itself could be the first of a series of di-boson resonances waiting discovery at LHC

26 Jul 2018 G. Chiodini - "ATLAS search for diboson resonances" 2/18

Benchmark models

Three models differing from new boson(s) spin:

Spin 0: Extended Higgs sector (2HDM, ectroweak-singlet modelSUSY, ...)

Heavy scalars H'

Spin 1: Heavy Vector Triplets (HVT)→W'-W'+Z'

- Additional SU(2) symmetry
- Small set of parameters:
 - Mass M_{V'}
 - Coupling to Bosons and Higgs g_V (enable VV, VH, HH decays)
 - Universal coupling to fermions g_F=g²_{EW}/g_F
- Model A: equal BRs to fermions and bosons $(g_V=1) \rightarrow Extended$ Gauge Symm.
- Model B: couplings to fermions suppressed $(g_V=3) \rightarrow Minimal Composite Higgs$

Spin 2: KK graviton from bulk Randall-Sundrum model \rightarrow G^{*}

- KK graviton in 5D warped ADS space with SM particles on 1 TeV brane extending into the "bulk".
- Couplings to light fermions and VBF production suppressed

26 Jul 2018 G. Chiodini - "ATLAS search for diboson resonances" 3/18

Production mechanisms

Current status of VV searches in ATLAS

$\square 201020102011 @ 10100 \mu\mu$							
ĭ 35-79.8 fb ⁻¹							
		$\bigvee \rightarrow$		Z→			H→
		qq'	li/	РР	W	ll	bb
$\bigvee \rightarrow$	qq'	ATLAS- CONF- 2018-16	arXiv: 1710. 07235	arXiv: 1708. 04445	arXiv: 1708. 09638	arXiv: 1708. 09638	arXiv: 1707. 06958
	li/			arXiv: 1710. 07235		arXiv: 1806. 01532	arXiv: 1712. 06518
	рр			arXiv: 1708. 04445	arXiv: 1708. 09638	arXiv: 1708. 09638	arXiv: 1707. 06958
Z→	VV						arXiv: 1712. 06518
	ll						arXiv: 1712. 06518
H→	bb						arXiv: 1804. 06174
Combination increases sensitivity							

2015-2016-2017 @ 13 Tol/ nn

5

THIS TALK: hadronic and semileptonic ~ 45% 9999 qql(v)v ~ 15% ♦ qqll, lvlv lvv ~ 5% llv $\sim 1\%$ ~0.5% llll See P.J.Falke and V. Pascuzzi Not treated here : Search for $X \rightarrow \gamma + W/Z/H \rightarrow \gamma + fat jet$

See plenary X.C.Vidal "Exotic searches - prompt signatures"

(arxiv:1805.01908) NEW

26 Jul 2018 G. Chiodini - "ATLAS search for diboson resonances" 5/18

Analysis strategy

 Search for a resonant structure into invariant mass or broad enhancement into transverse mass
Background estimation: full data-driven or/and MC based.

Best performance at high masses where BG is smaller.

Jet trimming and boosted objects

26 Jul 2018 G. Chiodini - "ATLAS search for diboson resonances" 7/18

V and H tagging performance

ATLAS-CONF-2018-016

arXiv:1707.06958

G. Chiodini - "ATLAS search for diboson resonances" 26 Jul 2018

VV fully hadronic: VV→JJ

Selection:

- Highest BR ~ 50%
- Merged regime only: 2 large-R jets
- 5 non exclusive SR: WW, ZZ, WZ, WW+WZ,WW+ZZ

BG evaluation fully data-driven:

- Multi-jets QCD (~85%), diboson, V+j, ttbar.
- Binned ML fit to m_{JJ} spectrum assuming a smoothly falling distribution
- 3 VR inverting $|\Delta y_{JJ}|$ cut and V-tag of WZ SR

G. Chiodini - "ATLAS search for diboson resonances" 9/18 26 Jul 2018

$$\frac{dn}{dx} = p_1(1-x)^{p_2 - \xi p_3} x^{-p_3}$$

VH fully hadronic: VH→JJ

arXiv:1707. 06958

Selection:

- 2 large-R jets
- Higher mass jet is the H candidate and the other is W/Z tagged.
- WH/ZH overlap by ~60%.
- Signal regions with 1-2 btags.

BG estimation:

- Multi-jets QCD >90%.
- Data-driven estimation:
 - functional form from CR with 0-tags.
 - normalization and corrections from high SB mass of the Higgs.

HH fully hadronic: HH→bbbb, HH→JJ

Boosted selection:

- 36.1 fb-1 from fat-jet trigger
- Categorise into 2,3,4 b-tagged track-jets **Resolved selection:**
- 27.5 fb-1 from b-jet trigger
- Pair highest score b-jets based on ΔR_{jj} and Δm_{2j}

Events / 100 GeV Data **ATLAS** ²⁰¹ 180 Multiiet $\sqrt{s} = 13 \text{ TeV}, 24.3 \text{ fb}^{-1}$ 0.16 ℃ 52 ℃ 01.0 Hadronic tt AS Simulation Resolved Signal Region, 2016 Semi-leptonic tt √s = 13 TeV. 24.3 fb⁻¹ 0.14 Events / 0.12 Resolved, 2016 Scalar (280 GeV) 10⁴ SM HH ×100 G_{kk} (800 GeV, k/ $\overline{M}_{Pl}=1$) 10³ 160 – G_{кк} (1200 GeV, k/M_р=2) 10² Stat+Syst Uncertainty 0.1 140 10 arXiv:1804. 0.08 120 06174 0.06 100 10 1.5 Data / Bkgd 0.04 0.02 60 0.5 200 1400 600 800 1000 1200 400 200 60 80 100 140 160 180 120 m_{нн} [GeV] m_{2i}lead [GeV]

26 Jul 2018 G. Chiodini - "ATLAS search for diboson resonances" II/18

BG evalutation:

- Multi-jets QCD shape from lower b-tag data and ttbar shape from MC.
- Correct iteratively multi-jets QCD kinematics to higher b-tag data by reweights derived from SB data
- BG's normalisation from simultaneous fit to 3 BG enriched regions and Higgs SB

HH fully hadronic: HH→bbbb, HH→JJ

Results:

- Simultaneous fit to resolved and boosted discriminant M_{4j} and M_{2J}
- Limits on mass range: 260–1400 GeV for resolved and 800–3000 GeV for boosted
- Set limits on heavy scalar and spin-2 bulk RS graviton

26 Jul 2018 G. Chiodini - "ATLAS search for diboson resonances" 12/18

ZV→*llqq, wqq* semi-leptonic

ZV→vvqq selection:

similar to $ZV \rightarrow IIqq$ but:

Only Merged selection

- VBF looser cut m_{j1j2} > 630 GeV
- No leptons and E_T^{miss}> 250 GeV
- Topological cuts to suppress multi-jets

BG evaluation data-driven:

- 7 CR for Z+jets (from qq SB)
- 4 CR for W+jets (from qq SB)
- 5 CR for ttbar (from eu selection)

$ZV \rightarrow llqq$, wqq semi-leptonic

26 Jul 2018

4/18 G. Chiodini - "ATLAS search for diboson resonances"

WV→@qq semi-leptonic

arXiv:1710. 07235

26 Jul 2018 G. Chiodini - "ATLAS search for diboson resonances" 15/18

VH→*llbb/lvbb/wbb* semi-leptonic

arXiv:1712. 06518

26 Jul 2018 G. Chiodini - "ATLAS search for diboson resonances" 16/18

Combination at 36. Ifb⁻¹

26 Jul 2018 G. Chiodini - "ATLAS search for diboson resonances" 17/18

Conclusions

Di-boson resonances searches at TeV scale are strongly motivated by naturalness principle

- ☑ Improving reconstruction and advanced analyses techniques we can get the most out of the data:
 - Boosted object tagging
 - ✓ New techniques in jet reconstruction and b-tagging
 - ☑ Machine learning methods applied to object definition and analysis selection
 - ✓ Statistical combinations of different decay modes

☑ With 2018 data an integrated luminosity of 140 fb⁻¹ is expected

A bright future in front of us with full run II, run III and HL-LHC

Event topology

Jet trimming

Jet trimming R=R 0 69 00 $p_T^i / p_T^{\text{jet}} < f_{\text{cut}}$ Initial jet Trimmed jet 111 111-1 - 1 - F - J Arbitrary units ATLAS Simulation 0.14anti-k, LCW jets, 600 ≤ p₁^{icl} < 800 GeV 0.12 Ungroomed Z'→ tt Ungroomed Dijets 0.1 Trimmed Z'→ tīt **Trimmed Dijets** 0.08-0.06-0.04 0.02 0 150 200 250 50 100 300 Jet mass [GeV] JHEP 1309 (2013) 076

26 Jul 2018 G. Chiodini - "ATLAS search for diboson resonances" 20/18

Jet substructure

Jet substructure

- The D₂^{β=1} variable is useful in identifying jets with two-prong substructures.
- Defined from n-point energy correlation functions:

$$\begin{split} E_{\mathrm{CF1}}(\beta) &= \sum_{i \in J} p_{\mathrm{T}_i}, \\ E_{\mathrm{CF2}}(\beta) &= \sum_{i < j \in J} p_{\mathrm{T}_i} p_{\mathrm{T}_j} \left(\Delta R_{ij} \right)^{\beta}, \\ E_{\mathrm{CF3}}(\beta) &= \sum_{i < j < k \in J} p_{\mathrm{T}_i} p_{\mathrm{T}_j} p_{\mathrm{T}_k} \left(\Delta R_{ij} \Delta R_{ik} \Delta R_{jk} \right)^{\beta}, \end{split}$$

$$D_2^{\beta=1} = E_{\rm CF3} \left(\frac{E_{\rm CF1}}{E_{\rm CF2}}\right)^3$$

Combined jet mass

The jet mass resolution is further improved by combining calorimeter and tracking information:

$$m_J \equiv w_{\text{calo}} \times m_J^{\text{calo}} + w_{\text{track}} \times \left(m_J^{\text{track}} \frac{p_{\text{T}}^{\text{calo}}}{p_{\text{T}}^{\text{track}}} \right)$$

- ω_{calo} and ω_{track} are inversely proportional to the square of the resolution of each mass term and are optimized to minimize the combined jet mass resolution.
- Resolution is improved especially at high jet p_T, due to the coarser angular resolution of the calorimeter.
- For Higgs boson reconstruction in the bb decay channel, the mass resolution can also be improved by correcting for semi-leptonic decays of the b-hadrons.

iês Ochoa, CIPANP2018

b-tagging

- Crucial for reconstructing Higgs to bb-bar decays but also for rejecting top backgrounds.
- · A b-hadron decay in the detector provides a measurable displaced secondary vertex.
- A multivariate tagging algorithm combines information from vertexing and impact parameter tagging algorithms to a set of tracks associated to a jet/track-jet, in order to identify jets containing b-hadrons.

26 Jul 2018 G. Chiodini - "ATLAS search for diboson resonances" 23/18

VV fully hadronic: VV→JJ

ZV→*llqq. wqq* semi-leptonic

arXiv:1708. 09638

26 Jul 2018 G. Chiodini - "ATLAS search for diboson resonances" 25/18