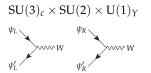
Search for Vector-Like Quarks in the ATLAS Experiment

Romain Madar on behalf of the ATLAS Collaboration

Laboratoire de Physique de Clermont (CNRS/UCA) Clermont-Ferrand – France


SUSY Conference – Barcelona (SP) – 25th of July 2018 –

1. What? Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.

$$\mathcal{L}_{\mathrm{mass}} = M_Q \; (\bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L)$$

Gauge-invariant mass term (*impossible* to have for SM fields)

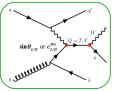
- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness

- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics

(singlets)
$$\longrightarrow T^0_{L,R}$$
, $B^0_{L,R}$
(doublets) $\longrightarrow (X T^0)_{L,R}$, $(T^0 B^0)_{L,R}$, $(B^0 Y)_{L,R}$
(triplets) $\longrightarrow (X T^0 B^0)_{L,R}$, $(T^0 B^0 Y)_{L,R}$

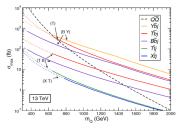
- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics
 - Modify observable physics via a mixing with SM quarks (3rd generation)

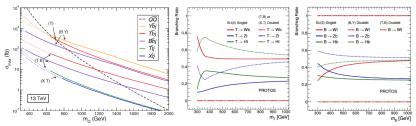
$$\begin{pmatrix} t_{L,R} \\ T_{L,R} \end{pmatrix} = \underbrace{ \begin{pmatrix} \cos \theta_{L,R}^u & -\sin \theta_{L,R}^u e^{i\phi_u} \\ \sin \theta_{L,R}^u e^{-i\phi_u} & \cos \theta_{L,R}^u \end{pmatrix}}_{\text{Propagating states}} \begin{pmatrix} t_{L,R}^0 \\ T_{L,R}^0 \end{pmatrix} SU(2) \text{ states}$$


- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics
 - Modify observable physics via a mixing with SM quarks (3rd generation)
 - Compatible with existing observations in particular for the 3rd generation

- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics
 - Modify observable physics via a mixing with SM quarks (3rd generation)
 - Compatible with existing observations in particular for the 3rd generation
- 3. How? Rich phenomenology at the LHC based on t, b, H, W, Z signature

Why searching for Vector-like quarks (VLQs)?


- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics
 - Modify observable physics via a mixing with SM quarks (3rd generation)
 - Compatible with existing observations in particular for the 3rd generation
- **3.** How? Rich phenomenology at the LHC based on *t*, *b*, *H*, *W*, *Z* signature

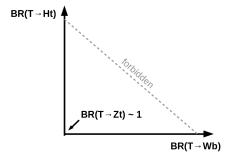

Single production / decay (model dependent - driven by EW)

- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics
 - Modify observable physics via a mixing with SM quarks (3rd generation)
 - Compatible with existing observations in particular for the 3rd generation
- 3. How? Rich phenomenology at the LHC based on t, b, H, W, Z signature

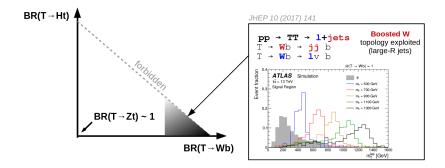
.0

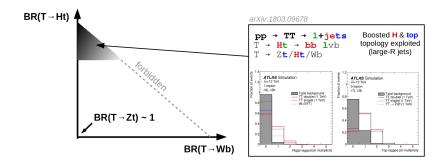
- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics
 - Modify observable physics via a mixing with SM quarks (3rd generation)
 - Compatible with existing observations in particular for the 3rd generation
- 3. How? Rich phenomenology at the LHC based on t, b, H, W, Z signature

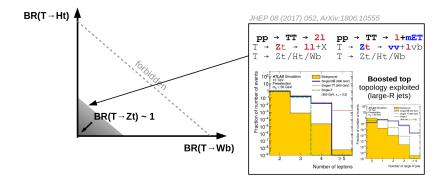
Table of content


1 The ATLAS search program

2 Pair production



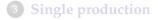

- VLQ with exotic charge |q| > 1 (only one possible decay)
- SU(2) singlet (BR independant from the mixing at the first order)


- VLQ with exotic charge |q| > 1 (only one possible decay)
- SU(2) singlet (BR independant from the mixing at the first order)

- VLQ with exotic charge |q| > 1 (only one possible decay)
- SU(2) singlet (BR independant from the mixing at the first order)

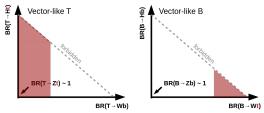
- VLQ with exotic charge |q| > 1 (only one possible decay)
- SU(2) singlet (BR independant from the mixing at the first order)

Mot 00	ivations Th O	ne ATLAS search program ●		Pair prod 0000			Single p 00	oroducti		Conclusion 0
	Ana	alysis	Ve	ctor-Like To	p T	Vecto	or-Like Bott	om B	$X_{+5/3}$	$Y_{-4/3}$
	name	ref.	Ht	Zt	Wb	Hb	Zb	Wt	$W^{+}t^{+2/3}$	$W^{-}b^{-1/3}$
posted	ℓ +jets / $0\ell + E_T^{miss}$ (boosted H/t)	JHEP 07 (2018) 089	PP	PP	-	-	-	-	-	-
specific, boosted	ℓ +jets (boosted W/t)	arXiv:1806.01762	-	-	-	-	-	PP	-	-
spe	ℓ +jets (boosted W)	JHEP 10 (2017) 141	-	-	PP	-	-	-	-	-
łγ's	$\ell + jets$	ATLAS-CONF-2016-072	-	-	SP	-	-	-	-	SP
specific, ℓ 's and γ 's	ℓ +jets+ E_T^{miss}	JHEP 08 (2017) 052	-	PP	-	-	-	-	-	-
ific, ℓ	$bH(ightarrow\gamma\gamma)$	ATLAS-CONF-2018-024	-	-	-	SP	-	-	-	-
spec	os2ℓ/3ℓ	arXiv:1806.10555	-	PP/SP	-	-	PP/SP	-	-	-
≈ generic	ss2ℓ/3ℓ	CERN-EP-2018-171	PP	PP	-	-	-	PP	SP/PP	-
≈ gei	full had (boosted $H/W/Z$)	CERN-EP-2018-176	PP	PP	PP	PP	PP	PP	-	-
	combination	ATLAS-CONF-2018-032	PP	PP	PP	PP	PP	PP	-	-


 $PP \equiv Pair Production, SP \equiv Single Production, red \equiv new results \equiv presented today$

Romain Madar (IN2P3/LPC)

	The ATLAS search program 00	Pair production ●000	Single production 00	
Generic decays				
Table of	f content			

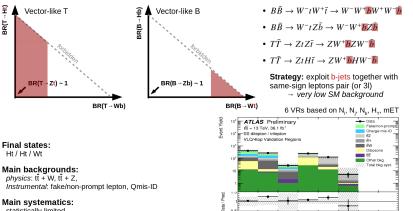

2 Pair production

4 Conclusion

	The ATLAS search program 00	Pair production	Single production 00	
Generic decays				

CERN-EP-2018-171

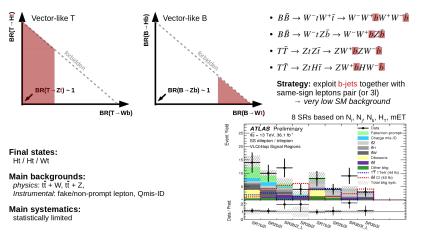
• $B\bar{B} \rightarrow W^- t W^+ \bar{t} \rightarrow W^- W^+ \bar{b} W^+ W^- \bar{b}$

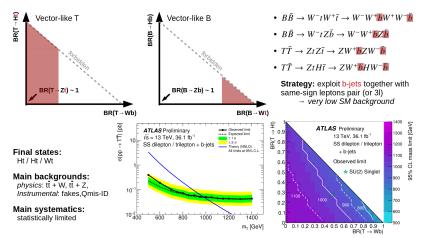

- $B\bar{B} \rightarrow W^{-}tZ\bar{b} \rightarrow W^{-}W^{+}bZ\bar{b}$
- $T\bar{T} \rightarrow ZtZ\bar{t} \rightarrow ZW^+ bZW^- \bar{b}$
- $T\bar{T} \rightarrow ZtH\bar{t} \rightarrow ZW^+bHW^-\bar{b}$

Strategy: exploit b-jets together with same-sign leptons pair (or 3l) → very low SM background

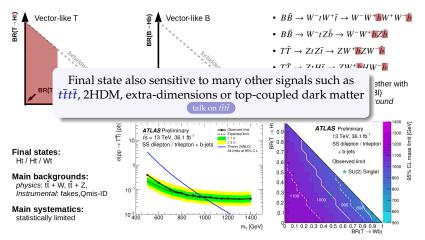
Final states: Ht / Ht / Wt

	The ATLAS search program 00	Pair production ○●○○	Single production 00	
Generic decays				


CERN-EP-2018-171


0.5 VB1b2L VB2b2l VB3b2I VB1b3I VR2b3I VR3h3

statistically limited

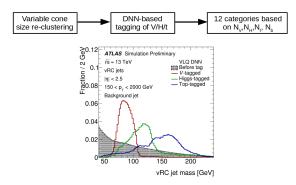

	The ATLAS search program 00	Pair production o●oo	Single production 00	
Generic decays				

CERN-EP-2018-176

Overall strategy:

- exploit jet sub-structure to tag W, Z, H and t using advanced technics
- keep multijet background under control, requiring moderate mET

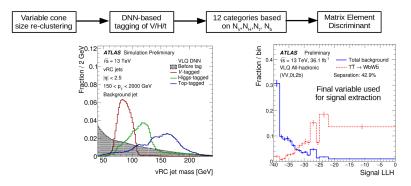
Variable cone size re-clustering


cone size optimized for

- capturing boosted structures
- minimizing overlap between objects (quite busy events)

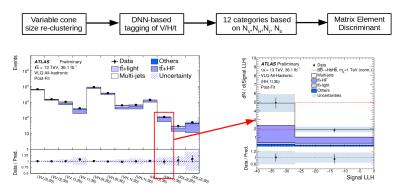
CERN-EP-2018-176

Overall strategy:


- exploit jet sub-structure to tag W, Z, H and t using advanced technics
- keep multijet background under control, requiring moderate mET

CERN-EP-2018-176

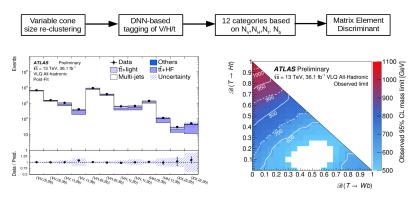
Overall strategy:


- exploit jet sub-structure to tag W, Z, H and t using advanced technics
- keep multijet background under control, requiring moderate mET

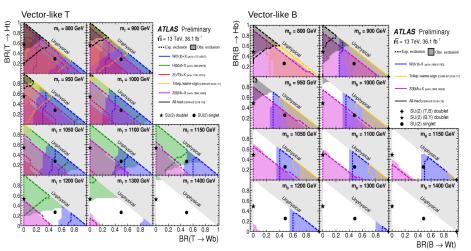
CERN-EP-2018-176

Overall strategy:

- exploit jet sub-structure to tag W, Z, H and t using advanced technics
- keep multijet background under control, requiring moderate mET



CERN-EP-2018-176


Overall strategy:

- exploit jet sub-structure to tag W, Z, H and t using advanced technics

- keep multijet background under control, requiring moderate mET

Putting everything together ...

Overlay of all channels

Romain Madar (IN2P3/LPC)

Putting everything together ...

Ŧ

0.

0.6

0.8F

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.6

0.4

0

BB(T

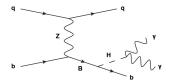
Vector-like T Vector-like B £ m. = 800 GeV m, = 900 GeV ATLAS Preliminary m_e = 800 Ge m_e = 900 GeV ATLAS Preliminary Vs = 13 TeV 36 1 fb⁻¹ Vs = 13 TeV. 36.1 fb⁻¹ VLO Combination BR(B VLO Combination 95% CL expected exclusion ---- 95% CL expected exclusion 95% CL observed exclusion m, = 950 GeV m, = 1000 GeV 95% CL observed exclusion m_e = 950 GeV m. = 1000 GeV 0.8 * SU(2) doublet SU(2) (T,B) doublet 0.6 * SU(2) (B,Y) doublet SU(2) singlet 0.4 SU(2) singlet 0.2 m, = 1100 GeV m₇ = 1050 GeV m, = 1150 GeV m_e = 1050 GeV m_e = 1100 GeV m_n = 1150 GeV 0.8 0.6 0.4 0.2 m. = 1200 GeV m. = 1300 GeV m. = 1400 GeV m_e = 1200 GeV m_e = 1300 GeV m_e = 1400 GeV 0.8 0.6 0.4 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 02 04 06 08 0.2 04 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 $BR(T \rightarrow Wb)$ $BR(B \rightarrow Wt)$

Full statistical combination

Romain Madar (IN2P3/LPC)

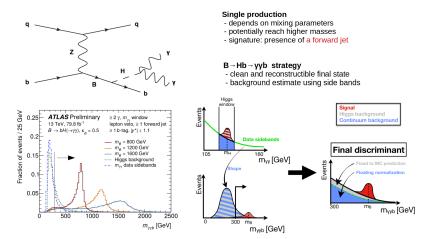
The ATLAS search program 00	Pair production 0000	Single production	

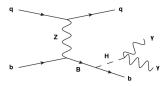
Table of content

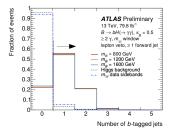


2 Pair production

4 Conclusion


ATLAS-CONF-2018-024


Single production

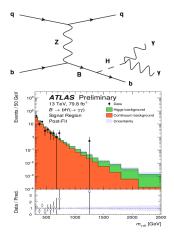

- depends on mixing parameters
- potentially reach higher masses
- signature: presence of a forward jet

ATLAS-CONF-2018-024

ATLAS-CONF-2018-024



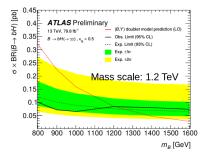
Single production


- depends on mixing parameters
- potentially reach higher masses
- signature: presence of a forward jet

$B \rightarrow Hb \rightarrow yyb$ strategy

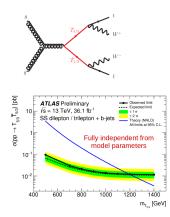
- clean and reconstructible final state
- background estimate using side bands

ATLAS-CONF-2018-024

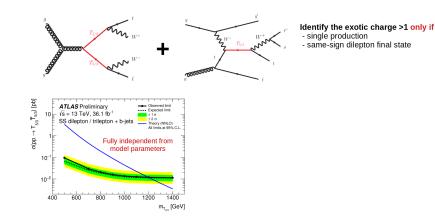


Single production

- depends on mixing parameters
- potentially reach higher masses
- signature: presence of a forward jet

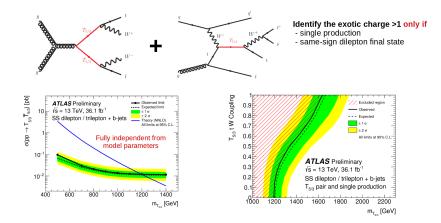

$B \to Hb \to \gamma\gamma b \ strategy$

- clean and reconstructible final state
- background estimate using side bands

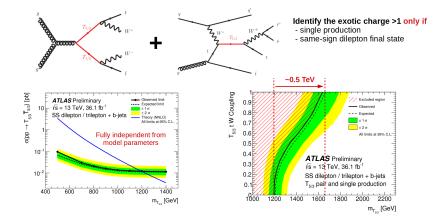


	The ATLAS search program 00	Pair production 0000	Single production ⊙●	
B with $H \rightarrow \gamma \gamma$				

Singly- and pair-produced $X_{5/3}$ with ss $2\ell + b$ -jets



Singly- and pair-produced $X_{5/3}$ with ss $2\ell + b$ -jets


Singly- and pair-produced $X_{5/3}$ with ss $2\ell + b$ -jets

CERN-EP-2018-171

Singly- and pair-produced $X_{5/3}$ with ss $2\ell + b$ -jets

CERN-EP-2018-171

The ATLAS search program 00	Pair production 0000	Single production 00	$_{\odot}$ Conclusion

Table of content

2 Pair production

	The ATLAS search program 00	Pair production 0000	Single production 00	Conclusion •
_				

Vector-like quarks appear in a large number of Standard Model extensions

extremely rich final states involving combination of H, W, Z, t, b

The ATLAS search program	Pair production	Single production	Conclusion
00	0000	00	•

Vector-like quarks appear in a large number of Standard Model extensions

extremely rich final states involving combination of H, W, Z, t, b

ATLAS has a vast search program including pair/single production and exotic charges

facing background difficult to model (e.g. $t\bar{t}$ +H.F. or $t\bar{t}V$ +H.F.)

The ATLAS search program	Pair production	Single production	Conclusion
00	0000	00	•

Vector-like quarks appear in a large number of Standard Model extensions

extremely rich final states involving combination of H, W, Z, t, b

ATLAS has a vast search program including pair/single production and exotic charges

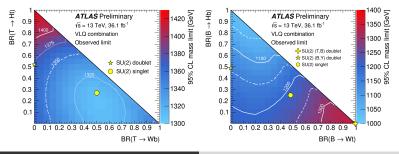
facing background difficult to model (e.g. $t\bar{t}$ +H.F. or $t\bar{t}V$ +H.F.)

Challenging and rare decay modes are exploited $(H \rightarrow \gamma \gamma, \text{ full had, ss} 2\ell \ell)$

using sophisiticated analysis strategy

Vector-like quarks appear in a large number of Standard Model extensions

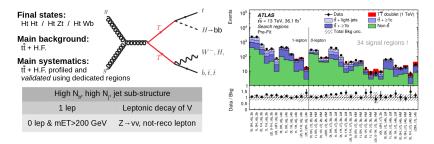
extremely rich final states involving combination of H, W, Z, t, b

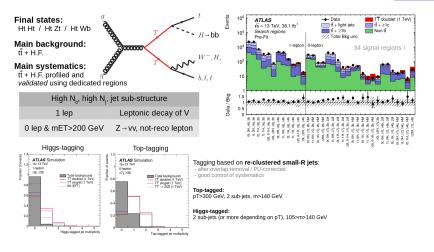

ATLAS has a vast search program including pair/single production and exotic charges

facing background difficult to model (e.g. $t\bar{t}$ +H.F. or $t\bar{t}V$ +H.F.)

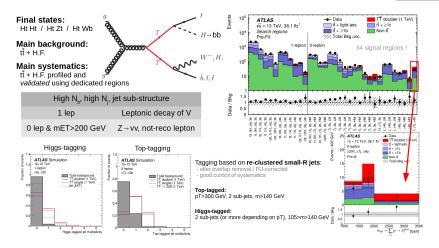
Challenging and rare decay modes are exploited $(H \rightarrow \gamma \gamma, \text{ full had, ss} 2\ell \ell)$

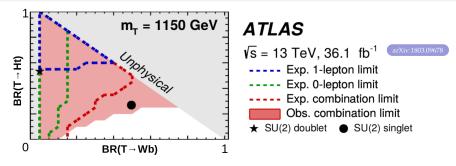
using sophisiticated analysis strategy


Combining all channels excludes T (B) with masses up to 1.4 (1.3) TeV


	The ATLAS search program 00	Pair production 0000	Single production 00	

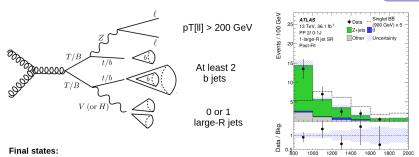
Backup Slides


arXiv:1803.09678



arXiv:1803.09678

arXiv:1803.09678



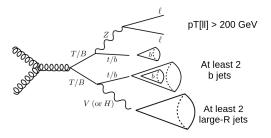
95% CL lower limits on T quark mass [TeV]				
Search	$\mathcal{B}(T \to Ht) = 1$	$\mathcal{B}(T \to Zt) = 1$	Doublet	Singlet
1-lepton channel	1.47(1.30)	1.12(0.91)	1.36(1.16)	1.23(1.02)
0-lepton channel	1.11(1.20)	1.12(1.17)	1.12(1.19)	0.99(1.05)
Combination	1.43 (1.34)	1.17 (1.18)	1.31 (1.26)	1.19(1.11)

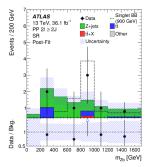
1000 1200 1400 1600 1800 2000

Exploiting $Z \rightarrow \ell \ell$ from the decay chain: $os2\ell$

Final states:

Zt V[t,b] / Zb V[t,b]


Main background: Z+jets


Main systematics: statistically limited

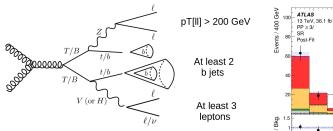
H_T [GeV]

Exploiting $Z \rightarrow \ell \ell$ from the decay chain: $os2\ell$

arXiv:1806.10555

Final states:

Zt V[t,b] / Zb V[t,b]


Main background:

Z+jets

Main systematics: statistically limited

Exploiting $Z \rightarrow \ell \ell$ from the decay chain: os 2ℓ

arXiv:1806.10555

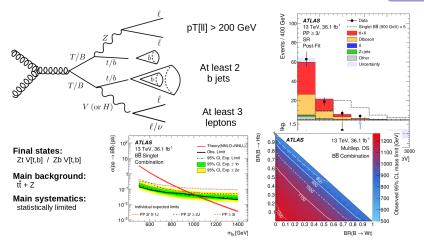
Doto

tf+X

····· Singlet BB (900 GeV) x 5

Final states:

Zt V[t,b] / Zb V[t,b]


Main background:

Main systematics: statistically limited

Romain Madar (IN2P3/LPC)

Exploiting $Z \rightarrow \ell \ell$ from the decay chain: os 2ℓ

arXiv:1806.10555

