

Performance of Missing Transverse Momentum (MET) reconstruction in High Pile-Up

SUSY2018, Barcelona, 23-27 July 2018

Outline

Dépa

- 1. Introduction and Baseline MET performance
- 2. Recent developments
- 3. MET towards HL-LHC

4. Summary

• 2 • 3

•4

Introduction (1)

What is MET and why is that important?

Dép Nuc

2

• 3

• 4

Introduction (2) ATLAS MET reconstruction overview and pileup

MET reconstruction and Track-based Soft Term (TST)

Negative vectorial sum of well identified physics objects (<u>hard</u> <u>term</u>) plus a <u>soft term</u> :

$$\vec{E}_T^{\text{miss}} = -\left(\vec{p}_T^{\text{muons}} + \vec{p}_T^{\text{electrons}} + \vec{p}_T^{\text{photons}} + \vec{p}_T^{\text{taus}} + \vec{p}_T^{\text{jets}} + \vec{p}_T^{\text{soft term}}\right)$$
hard term

Objects:

- Track-based Soft Term (TST): tracks unassociated to any well-identified physics object (track p_T> 500 MeV) and matched to primary vertex.
- Jets: calibrated, made of anti-kt R=0.4 topoclusters, pileup suppression with JVT.

– Jet tracks

Pileup and MET

Pileup = multiple p-p interactions in the same (or close-by) LHC bunch crossing.

This contamination particularly affects the MET reconstruction.

Robust pileup suppression in MET is fundamental for the current and future ATLAS physics program.

Valente

Marco

2

•3

• 4

Baseline MET reconstruction performance

Ey RMS [GeV]

Ex^{miss},

20

18

16

14

12

20

ATLAS MET performance in recent data (2017-2018)

- Performance of MET reconstruction has been recently evaluated using the new data provided by the LHC.
- MET tails and resolution are the same between the 2017 and 2018 data periods.

MET working points (WPs)

Dépa Nuclé Unive

•4

Recent developments (1)

Forward Jet Vertex Tagger (fJVT)

Pile-up jet categories

QCD pile-up jets: caused by an hard QCD processes occurring in a single pile-up interaction.

How to tag forward QCD pile-up jets (I**n**I>2.5, out of tracker acceptance) as pile-up?

The Forward Jet Vertex Tagger (fJVT) algorithm

- 1. For each vertex i, use tracks of the central QCD pileup jets to compute a simple MET estimation $\langle p_T^{miss} \rangle^i$ for vertex i.
- 2. Check if there is a forward jet balancing $\langle p_T^{miss} \rangle^i$. If there is, then forward jet is a QCD pileup jet and it is removed!

arxiv:1705.02211

Dépa Nuclé Unive

•4

Recent developments (1)

Forward Jet Vertex Tagger (fJVT)

Pile-up jet categories

QCD pile-up jets: caused by an hard QCD processes occurring in a single pile-up interaction.

> How to tag forward QCD pile-up jets (|**n**|>2.5, out of tracker acceptance) as pile-up?

The Forward Jet Vertex Tagger (fJVT) algorithm

- 1. For each vertex i, use tracks of the central QCD pileup jets to compute a simple MET estimation $\langle p_T^{miss} \rangle'$ for vertex i.
- 2. Check if there is a forward jet balancing $\langle p_T^{miss} \rangle^{I}$. If there is, then forward jet is a QCD pileup jet and it is removed!

Number of primary vertices N_

3 3 O 705 arxiv:1

Dépa Nuclé Unive

•4

Recent developments (1)

Forward Jet Vertex Tagger (fJVT)

Pile-up jet categories

QCD pile-up jets: caused by an hard QCD processes occurring in a single pile-up interaction.

How to tag forward QCD pile-up jets (I**n**I>2.5, out of tracker acceptance) as pile-up?

The Forward Jet Vertex Tagger (fJVT) algorithm

- 1. For each vertex i, use tracks of the central QCD pileup jets to compute a simple MET estimation $\langle p_T^{miss} \rangle^i$ for vertex i.
- 2. Check if there is a forward jet balancing $\langle p_T^{miss} \rangle^i$. If there is, then forward jet is a QCD pileup jet and it is removed!

arxiv:1705.02211

Dépa Nuclé Unive

Recent developments (1)

Forward Jet Vertex Tagger (fJVT)

Pile-up jet categories

QCD pile-up jets: caused by an hard QCD processes occurring in a single pile-up interaction.

How to tag forward QCD pile-up jets (I**n**I>2.5, out of tracker acceptance) as pile-up?

The Forward Jet Vertex Tagger (fJVT) algorithm

- 1. For each vertex i, use tracks of the central QCD pileup jets to compute a simple MET estimation $\langle p_T^{miss} \rangle^i$ for vertex i.
- 2. Check if there is a forward jet balancing $\langle p_T^{miss} \rangle^i$. If there is, then forward jet is a QCD pileup jet and it is removed!

arxiv:1705.02211

Dépa Nucle Unive

Recent developments (1)

Forward Jet Vertex Tagger (fJVT)

Pile-up jet categories

QCD pile-up jets: caused by an hard QCD processes occurring in a single pile-up interaction.

> How to tag forward QCD pile-up jets (|**n**|>2.5, out of tracker acceptance) as pile-up?

The Forward Jet Vertex Tagger (fJVT) algorithm

- 1. For each vertex i, use tracks of the central QCD pileup jets to compute a simple MET estimation $\langle p_T^{miss} \rangle'$ for vertex i.
- 2. Check if there is a forward jet balancing $\langle p_T^{miss} \rangle^{I}$. If there is, then forward jet is a QCD pileup jet and it is removed!

3 3 O 705 arxiv:1

Dépa Nuclé Unive

•4

Recent developments (1)

Forward Jet Vertex Tagger (fJVT)

Pile-up jet categories

QCD pile-up jets: caused by an hard QCD processes occurring in a single pile-up interaction.

> How to tag forward QCD pile-up jets (|**n**|>2.5, out of tracker acceptance) as pile-up?

The Forward Jet Vertex Tagger (fJVT) algorithm

- 1. For each vertex i, use tracks of the central QCD pileup jets to compute a simple MET estimation $\langle p_T^{miss} \rangle'$ for vertex i.
- 2. Check if there is a forward jet balancing $\langle p_T^{miss} \rangle^{I}$. If there is, then forward jet is a QCD pileup jet and it is removed!

3 3 O 705 arxiv:1

Dépa Nuclé Unive

•4

Recent developments (1)

Forward Jet Vertex Tagger (fJVT)

Pile-up jet categories

QCD pile-up jets: caused by an hard QCD processes occurring in a single pile-up interaction.

> How to tag forward QCD pile-up jets (|**n**|>2.5, out of tracker acceptance) as pile-up?

The Forward Jet Vertex Tagger (fJVT) algorithm

- 1. For each vertex i, use tracks of the central QCD pileup jets to compute a simple MET estimation $\langle p_T^{miss} \rangle'$ for vertex i.
- 2. Check if there is a forward jet balancing $\langle p_T^{miss} \rangle^{I}$. If there is, then forward jet is a QCD pileup jet and it is removed!

Number of primary vertices N_

3 3 C 705 arxiv:1

Dép Nuc

Recent developments (2)

Particle Flow and jet/MET reconstruction performance

The (ATLAS) Particle Flow algorithm

Particle Flow jet and pileup rejection improvements

Improvements from Particle Flow to MET are due to:

- Improvements to the jet energy resolution at low p_T.
- Larger rejection of pileup jets (lower amount of fake jets).

Recent developments (3)

Electromagnetic end-cap calorimeter (EMEC) cleaning

Z Dép

• 3

•4

Recent developments (4)

Object-based MET significance

MET significance definition

MET significance: is the measured MET compatible with the 0 MET hypothesis when we consider object resolutions?

 $\mathcal{S} = \frac{E_T^{\text{miss}}}{\sigma(E_T^{\text{miss}})} \approx \frac{E_T^{\text{miss}}}{\sqrt{\sum E_T}}$

Event-based MET significance used by many ATLAS analyses

Event-based MET significance is just an approximation made assuming $\sigma(E_T^{\text{miss}}) \approx \sqrt{\sum E_T}$

This approximation is not always good and a MET significance estimation based on individual object resolution might be better!

Many CMS analyses are already using a similar observable!

The object based MET significance provides better separation for events with true and fake MET ($ZZ \rightarrow ee_{VV}$ and $Z \rightarrow ee$).

0.5

First ATLAS analysis application can be found in Christian Lüdtke talk (link).

Recent developments (5)

MET triggers

ATLAS-MissingEtTriggerPublicResults

Drawing taken from here.

2

3

Suppressed pileur

Eт

MET

10

MET triggers and pileup mitigation

The large amount of collisions from the LHC can produce additional objects that could fire triggers without a proper online pileup mitigation.

Pileup degradation is particularly large in MET triggers (no sufficient tracking information available).

Pileup fit (or pufit) procedure:

- 1. Categorisation of calorimeter towers as soft/hard using tower E_T .
- 2. Fit of estimated soft pileup contributions (total MET = 0 for pileup).
- 3. **Calculation** of final MET after removal of soft pileup contributions.

Marco Valente Département de Physique Nucléaire et Corpusculaire Université de Genève

•3

Dépa Nuclé

MET towards HL-LHC

Pileup conditions at the HL-LHC

Today, the average number of interactions per bunch crossing is $<\mu> \cong 40$. For the HL-LHC program, the $<\mu>$ value is estimated to be around 200.

~5 times more pileup compared to now!

Reconstruction of MET (online and offline) will become more challenging at the HL-LHC.

ATLAS-PUBLIC-Lumi

E.g. Tracking impact on MET triggers

- The upgrades to the ATLAS TDAQ system for the HL-LHC will provide **tracks for MET trigger chains**.
- Offline pileup mitigation techniques can be applied also online.
- Lowest track p_{T} and larger η acceptance provides the best MET trigger performance.

Summary

- 1. The large pileup conditions of the LHC represent today a major challenge for the ATLAS detector.
- 2. A precise and **robust MET reconstruction (offline and online) against pileup will play a fundamental role**, already for analyses using the full Run 2 dataset.
- Large improvements to offline MET reconstruction have been recently achieved, in particular related to forward Jet cleaning, Particle Flow.
- Object-based MET significance definition has also been recently developed, allowing analyses to exploit <u>better signal/</u> <u>background separation</u>.
- 5. Pileup suppression will play a fundamental role for offline and online MET in Run 3 and beyond (HL-LHC).

Dépa

•]

•2

• 3

•4

MET reconstruction

Missing Transverse MomEntum (MET) reconstruction

Negative vectorial sum of well identified physics object (<u>hard term</u>) plus a <u>soft</u> <u>term</u> :

$$E_{T}^{miss} = -\left(\sum_{i \in muons} p_{T,i} + \sum_{i \in electrons} p_{T,i} + \sum_{i \in photons} p_{T,i} + \sum_{i \in hadronic \tau} p_{T,i} + \sum_{i \in jets} p_{T,i} + \sum_{i \in Soft Term} p_{T,i}\right)$$
hard term

Object selection:

- Electrons, Muons, Taus, Photons: analysis dependent.
- Jets: anti-kt topoclusters (R=0.4), pT > 20 GeV, pile-up suppression + EM+JES calibration.
- Track-based soft term (TST): tracks unassociated to any well-identified physics object with pT> 500 MeV, |η| < 2.4 (ATLAS tracker acceptance), |d₀| < 2 mm, |z₀ sin θ| < 3 mm.

TST advantages	TST disadvantages
Small pileup dependence (PV association)	Missing soft neutral particles.

Dépa Nuclé Unive

•]

•2

• 3

•4

MET pileup dependency

ď

ment de Physi e et Corpuscu é de Genève

Départe Nucléair Universi

•]

•2

• 3

•4

Marco Valente

Particle Flow MET

Particle Flow vs topocluster reconstruction

Dép Nuc

•]

•2

• 3

•4

Particle Flow MET

Resolutions for Tight and Loose Working Points

17

Valente

Marco

•]

•2

• 3

•4

Dép

Particle Flow MET

Resolutions for $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$

•]

• 2

03

•4

Recent developments (5)

Object-based MET significance

ATLAS-CONF-2018-038

MET significance definition

MET significance = is the measured MET compatible with the 0 MET hypothesis when we consider object resolutions? In general, the **squared MET significance** can be defined as:

 $S^{2} = \frac{\left|\boldsymbol{E}_{T}^{\text{miss}}\right|^{2}}{\sigma_{L}^{2}\left(1-\rho_{LT}^{2}\right)}. \qquad \sigma_{L}^{2} = \text{total longitudinal variance of } E_{T}^{\text{miss}}$ $\rho_{LT} = \text{longitudinal and transverse } E_{T}^{\text{miss}} \text{ correlation}$

 $\mathcal{S} = \frac{E_T^{\text{miss}}}{\sqrt{\sum E_T}}$

Event-based MET significance used by many ATLAS analyses

Event-based MET significance is just an approximation made assuming $\sigma_L^2 \propto \sum E_T$ and $\rho_{LT}^2 \approx 0$.

This approximation is not always good and a MET significance estimation based on single object resolution might be better!

The object based MET significance provides better separation for events with true and fake MET (Z→eevv and Z→ee).

Dépa Nucle Unive

•]

•2

03

•4

Systematic uncertainties

ATLAS-CONF-2018-023

Recent developments

Object-based MET significance

21

Dépa Nuclé Unive

• 2

• 3

• 4

MET triggers

Pufit rate and efficiencies

MET triggers at HL-LHC

sculaire (DPI ment de Physique

Marco Valente Départ Nucléa Univers

