

Studies of Higgs boson production in association with a ttbar pair

Alexander Held¹²³ on behalf of the ATLAS Collaboration

¹ CERN ² TRIUMF ³ University of British Columbia

26th International Conference on Supersymmetry and Unification of Fundamental Interactions (Barcelona)

July 23-27, 2018

Commission

This research project has been supported by a Marie Skłodowska-Curie Innovative Training Network Fellowship of the European Commission's Horizon 2020 Programme under contract number 675440 AMVA4NewPhysics.

Introduction

- Top-Higgs Yukawa coupling yt
 - ► Largest Yukawa coupling in the SM, $y_t \approx 1$
 - Sensitive to new physics
- Indirect measurements of y_t via ggF and $H \rightarrow \gamma \gamma$ loop
 - Must rely on assumptions of particles entering loops
- ttH provides direct probe for top-Higgs Yukawa coupling yt²

ttH signatures

• Wide variety of final states accessible, good understanding of all reconstructed objects is crucial!

Overview of results

Channel	Dataset	Reference
ttH(bb)	36.1 fb ⁻¹ , 13 TeV	Phys. Rev. D 97, 072016
ttH multi-lepton (mostly $H \rightarrow WW^*$ and $H \rightarrow \tau \tau$)	36.1 fb ⁻¹ , 13 TeV	Phys. Rev. D 97, 072003
ttH(ZZ*→4I)	79.8 fb ⁻¹ , 13 TeV	
ttH(γ γ)	79.8 fb ⁻¹ , 13 TeV	CERN-EP-2018-138 submitted to PLB
ttH combination	36.1 - 79.8 fb ⁻¹ , 13 TeV	

Event fraction

 10^{-2}

ERN

Π

Ū

2018-04

0.8

Analysis regions:

- ▶ Single lepton channel: 1 light lepton (e, μ), ≥5 jets
- ▶ **Di-lepton channel:** 2 light leptons (e, μ), ≥3 jets
- Boosted channel: large-R top-like and Higgs-like jets
- Regions built using 5 b-tagging working points and Niets

- Helps constrain tt + \geq 1b / tt + \geq 1c / tt + light modelling

- Major analysis challenge:
 - Modelling of tt + heavy flavour background
 - 5-flavour scheme sample, re-weighted tt + \geq 1b components to 4-flavour scheme prediction
 - Large modelling uncertainties on ttbar (especially for tt + heavy flavour)

b-tagger performance

irreducible tt+bb background

d-iets

ight-flavour jets

ATLAS Simulation

√s = 13 TeV, tī

Signal extraction strategy:

- Intermediate MVAs aimed at signal reconstruction
- Fit performed on classification BDT (inputs: intermediate step, kinematics, b-tagging info)

example: reconstructed Higgs mass

example: classification BDT

36.1 fb⁻

ttH(bb): Results

∏tt + light

tt + V

---ttH

• Fit model:

- Events / bi Profile likelihood fit of 10 control regions and 9 signal regions
- BDT distributions in all signal regions
- H_T (scalar sum of jet p_T) or single bin in control regions
- Free-floating tt + \geq 1b and tt + \geq 1c normalization

- tt + ≥1b modelling ($^{+0.46}$, $_{-0.46}$)
- MC statistical uncertainties (+0.29, -0.31)
- b-tagging (+0.16, -0.16)

 \rightarrow significant experimental and theoretical progress needed for further improvements!

ATLAS

Dilepton

Post-Fit

√s = 13 TeV. 36.1 fb⁻

10⁷

10⁶

10⁵

10

10³

Data

Non-tt

ttH

// Total unc.

36.1 fb⁻

- + 7 different analysis channels with different e/μ and hadronic τ multiplicity
 - ► ≥1 b-jet, 2-4 jets
- Isolation/b-tagging BDT for light lepton selection, veto on charge mis-ID BDT
- Backgrounds:
 - Irreducible: dominated by tt+V and VV
 - Taken from MC and validated in data
 - Reducible: non-prompt e/μ/τ, charge misidentified e/μ
 - Estimated from data

- Signal extraction:
 - Dedicated MVA approaches in most channels, examples:
 - 2I SS: combination of two BDTs (trained against fakes and ttV)
 - 3I SR and CRs: multi-class BDT (5 classes)

- Fit model:
 - Combined profile likelihood fit of all signal and control regions
 - BDT discriminants in most signal regions
 - Control regions validate irreducible backgrounds

- Dominant systematic uncertainties on μ_{ttH}:
 - ► ttH cross-section (+0.20 -0.09)
 - ▶ Jet energy scale and resolution (+0.18 -0.15)
 - Non-prompt e/µ estimates (+0.15 -0.13)

10

significance: 4.1σ (2.8σ expected)

36.1 fb⁻

- New for summer 2018: analysis with 79.8 fb⁻¹
- Selection:
 - ▶ 115 GeV < m_{4l} < 130 GeV
 - Hadronic-enriched region:
 - \geq 4 jets, \geq 1 b-tag, no additional light leptons
 - Split in two bins using a BDT ("Had 1", "Had 2")
 - Leptonic-enriched region
 - \geq 2 jets, \geq 1 b-tag, \geq 1 additional light lepton
- Major backgrounds:
 - ttV, other Higgs production modes
- Extremely statistically limited:
 - no events observed in signal region
 - 1.1 events expected (0.6 ttH)
 - Expected sensitivity: 1.2σ

ttH(yy): Design

- New for summer 2018: analysis with 79.8 fb⁻¹
- Analysis regions:
 - Hadronic region "Had":
 - \geq 3 jets, \geq 1 b-tag, no light leptons (e/µ)
 - Leptonic region "Lep":
 - \geq 1 b-tagged jet, \geq 1 light lepton (e/µ)
- Defining signal-enriched regions:
 - BDTs implemented via XGBoost
 - Inputs include: photon kinematics (p_T/m_{_{YY}}, \eta,
 - φ) and jet 4-vectors
 - Signal: ttH (from simulation)
 - Backgrounds: γγ, tt+γγ (data in control regions), other Higgs production (from simulation)
 - Perform cut on BDT output to veto backgrounds
 - Categorize events passing cut

ttH(yy): Categories

79.8 fb⁻

- Fit details:
 - Simultaneous unbinned fit of m_{YY} (105-160 GeV) in all 7 categories
 - ttH signal: double-sided crystal ball
 - Continuum background: smooth functions (power-law or exponential)
- Significance:
 - 4.1σ (3.7σ expected)
 - Had: 3.8σ (2.7σ), Lep: 1.9σ (2.5σ)
- Dominant uncertainties:
 - Statistically dominated
 - ttH shower & hadronization (8%)
 - Photon isolation, resolution, scale (8%)
 - Jet energy scale (5%)
- 50% more sensitive than previous result:
 - Inclusion of 4-momentum information of objects (30% improvement for same luminosity)
 - Improved reconstruction and selection

Inputs:

bb, multi-lepton: 36.1 fb⁻¹; γγ, ZZ^{*}→4I: 79.8fb⁻¹

Combination details:

- Theory uncertainties correlated
- Experimental uncertainties largely uncorrelated
- Other Higgs production modes fixed to SM

Dominant systematic uncertainties:

- tt + heavy flavour modelling (12%)
- ttH modelling (10%)
- Experimental uncertainties (9%)

Analysis	Integrated	Expected	Observed
	luminosity $[fb^{-1}]$	significance	significance
$H \to \gamma \gamma$	79.8	3.7σ	4.1σ
$H \rightarrow \text{multilepton}$	36.1	2.8σ	4.1σ
$H ightarrow b ar{b}$	36.1	1.6σ	1.4σ
$H \to Z Z^* \to 4\ell$	79.8	1.2σ	0σ
Combined (13 TeV)	36.1 - 79.8	4.9σ	5.8σ
Combined $(7, 8, 13 \text{ TeV})$	4.5, 20.3, 36.1 - 79.8	5.1 σ	6.3σ

observation of ttH!

ttH combination

ttH cross-section

Analysis	Integrated	$t\bar{t}H$ cross	
	luminosity $[fb^{-1}]$	section [fb]	
$H \to \gamma \gamma$	79.8	$710 {}^{+210}_{-190}$ (stat.) ${}^{+120}_{-90}$ (syst.)	
$H \rightarrow \text{multilepton}$	36.1	790 ±150 (stat.) $^{+150}_{-140}$ (syst.)	
$H ightarrow b ar{b}$	36.1	$400 \ ^{+150}_{-140} \ (\text{stat.}) \pm 270 \ (\text{syst.})$	
$H \to Z Z^* \to 4\ell$	79.8	<900 (68% CL)	
Combined (13 TeV)	36.1 - 79.8	$670 \pm 90 \text{ (stat.)} ^{+110}_{-100} \text{ (syst.)}$	

- Compare to: $\sigma_{\rm ttH}^{\rm SM} = 507^{+35}_{-50}~{\rm fb}$
 - Measurement consistent with SM prediction!
- Combination is assuming SM branching ratios

Observation of ttH production process:

- 6.3σ significance (5.1σ expected)
- Good agreement with SM: $\sigma_{t\bar{t}H} = 670 \pm 90 \text{ (stat.)} + 110 \text{ (syst.)}$ fb

Backup

Powheg + Pythia 8 (5FS) is re-weighted per tt+ ≥1b sub-category to Sherpa + OpenLoops NLO (4FS)

Systematic source	Description	$t\bar{t}$ categories
$t\bar{t}$ cross-section	Up or down by 6%	All, correlated
$k(t\bar{t}+\geq 1c)$	Free-floating $t\bar{t} + \geq 1c$ normalization	$t\bar{t} + \geq 1c$
$k(t\bar{t}+\geq 1b)$	Free-floating $t\bar{t} + \geq 1b$ normalization	$t\bar{t} + \geq 1b$
Sherpa5F vs. nominal	Related to the choice of NLO event generator	All, uncorrelated
PS & hadronization	Powheg+Herwig 7 vs. Powheg+Pythia 8	All, uncorrelated
ISR / FSR	Variations of $\mu_{\rm R}$, $\mu_{\rm F}$, $h_{\rm damp}$ and A14 Var3c parameters	All, uncorrelated
$t\bar{t} + \geq 1c$ ME vs. inclusive	MG5_aMC@NLO+HERWIG++: ME prediction (3F) vs. incl. (5F)	$t\bar{t} + \geq 1c$
$t\bar{t} + \geq 1b$ Sherpa4F vs. nominal	Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) vs. POWHEG+PYTHIA 8 (5F)	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ renorm. scale	Up or down by a factor of two	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1b$ resumm. scale	Vary $\mu_{\rm Q}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ global scales	Set $\mu_{\rm Q}$, $\mu_{\rm R}$, and $\mu_{\rm F}$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ shower recoil scheme	Alternative model scheme	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ PDF} (MSTW)$	MSTW vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ PDF} (\text{NNPDF})$	NNPDF vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ UE	Alternative set of tuned parameters for the underlying event	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ MPI}$	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 3b$ normalization	Up or down by 50%	$t\bar{t} + \ge 1b$

ttH(bb): Uncertainties

Uncertainty source $\Delta \mu$		$.\mu$
$t\bar{t} + \geq 1b$ modeling	+0.46	-0.46
Background-model stat. unc.	+0.29	-0.31
b-tagging efficiency and mis-tag rates	+0.16	-0.16
Jet energy scale and resolution	+0.14	-0.14
$t\bar{t}H$ modeling	+0.22	-0.05
$t\bar{t} + \geq 1c \text{ modeling}$	+0.09	-0.11
JVT, pileup modeling	+0.03	-0.05
Other background modeling	+0.08	-0.08
$t\bar{t} + \text{light modeling}$	+0.06	-0.03
Luminosity	+0.03	-0.02
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t} + \geq 1b$ normalization	+0.09	-0.10
$t\bar{t} + \geq 1c$ normalization	+0.02	-0.03
Intrinsic statistical uncertainty	+0.21	-0.20
Total statistical uncertainty	+0.29	-0.29
Total uncertainty	+0.64	-0.61

ttH multi-lepton: Backgrounds, S/B

Uncertainty Source		μ
$t\bar{t}H$ modeling (cross section)	+0.20	-0.09
Jet energy scale and resolution	+0.18	-0.15
Non-prompt light-lepton estimates	+0.15	-0.13
Jet flavor tagging and τ_{had} identification	+0.11	-0.09
$t\bar{t}W ext{ modeling}$	+0.10	-0.09
$t\bar{t}Z$ modeling	+0.08	-0.07
Other background modeling	+0.08	-0.07
Luminosity	+0.08	-0.06
$t\bar{t}H$ modeling (acceptance)	+0.08	-0.04
Fake τ_{had} estimates	+0.07	-0.07
Other experimental uncertainties	+0.05	-0.04
Simulation sample size	+0.04	-0.04
Charge misassignment	+0.01	-0.01
Total systematic uncertainty	+0.39	-0.30

Post-fit impact on µ:
$\theta = \theta + \Delta \theta$ $\theta = \theta - \Delta \theta$
Nuis. Param. Pull
ttH cross section (scale variatior
Jet energy scale (pileup subtraction
Luminos
Jet energy scale (flavor comp. 2ℓ S
Jet energy scale variation
ttW cross section (scale variation
ttZ cross section (scale variation
au had identification
ttH cross section (PD
ttill verselsliver (shever two

ttH($\gamma\gamma$): m_{$\gamma\gamma$} distributions (Had category)

ttH($\gamma\gamma$): m_{$\gamma\gamma$} distributions (Lep category)

UBC

ttH(yy): Validation

- Built with dedicated BDT for validation purposes, not part of analysis
- $\,{\scriptstyle \bullet}\,$ Events in the two Had bins with highest S/B, 105 GeV $< m_{\gamma\gamma} <$ 160 GeV
- MC normalization from fitting top-candidate mass distributions to data (58% ttyy, 32% yy+jets)

ttH(yy): Event display

• **ttH(yy)** analysis yields counted in smallest m_{yy} window containing 90% of expected signal

	Expected			Observed	
Bin	$t\bar{t}H$ (signal)	Non- $t\bar{t}H$ Hig	ggs Non-Higgs	Total	Total
		Ĩ	$H \to \gamma \gamma$		
Had 1	4.2(11)	0.49(33)	1.76(55)	6.4(13)	10
Had 2	3.41(74)	0.69(56)	7.5(11)	11.6(15)	14
Had 3	4.70(88)	2.0(17)	32.9(22)	39.6(32)	47
Had 4	3.00(55)	3.2(31)	55.0(28)	61.3(47)	67
Lep 1	4.5(10)	0.25(9)	2.19(59)	6.9(12)	7
Lep 2	2.23(39)	0.27(10)	4.59(91)	7.1(10)	7
Lep 3	0.82(18)	0.30(13)	4.58(91)	5.70(88)	5
$H \to ZZ^* \to 4\ell$					
Had 1	0.169(31)	0.021(7)	0.008(8)	0.198(33)	0
Had 2	0.216(32)	0.20(9)	0.22(12)	0.63(16)	0
Lep	0.212(31)	0.0256(23)	0.015(13)	0.253(34)	0

ttH combination

Uncertainty source	$\Delta \sigma_{t\bar{t}H} / \sigma_{t\bar{t}H} $ [%]
Theory uncertainties (modelling)	11.9
$t\bar{t}$ + heavy flavour	9.9
$t \bar{t} H$	6.0
Non- $t\bar{t}H$ Higgs boson production modes	1.5
Other background processes	2.2
Experimental uncertainties	9.3
Fake leptons	5.2
Jets, $E_{\rm T}^{\rm miss}$	4.9
Electrons, photons	3.2
Luminosity	3.0
au-lepton	2.5
Flavour tagging	1.8
MC statistical uncertainties	4.4

Studies of Higgs boson production in association with a ttbar pair

The search for the production of the Higgs Boson with a pair of top-anti-top quarks is both very important and very challenging. This talks presents the analyses using Higgs boson decays to bbbar pairs, to two Z bosons, to other multi-lepton final states, and to a pair of photons, using pp collision data collected at 13 TeV, as well as their combined results.