Collider search for minimal dark matter 1703.09675, in preparation

Hajime Fukuda, N. Nagata, H.Otono and S. Shirai 2018 July 26

Kavli IPMU, U. Tokyo

Dark Matter Properties

- What characterize the dark matter?
 - Abundance: $\Omega h^2 \sim 0.1$
 - Stability
 - Small interaction b/w SM particles
- The "minimal" candidate → minimal DM

Cirelli et al. 05

Minimal Dark Matter

- Particle with SU(2) and U(1) charge
- Abundance: WIMP miracle
- Automatically stable for higher SU(2) repr.
- Neutral one is weakly interacting

DM Charge and Mass

SU(2)	U (1)	mass
2	$\frac{1}{2}$	1.1 TeV
3	0	2.9 TeV
5	0	9.4 TeV
		Cirelli et al. 1

We focus on the Fermionic 5-plet in this talk

Detection Methods

- Now we know the interaction and the (upper bound of) mass.
- Then, how do we detect it?
 - Indirect detection
 - Direct detection
 - Collider experiments

Search Strategy

- $E_T + j$: ~ 3TeV for 100 TeV collider Ismail et al. 16
- Disappearing tracks from the decay of charged partners

Charged Partner in the SU(2) Multiplet

• After EWSB, the 5-plet χ becomes

$$\chi = (\chi^{2+} \chi^+ \chi^0 \chi^- \chi^{2-})$$

 We have charged Dirac Fermions as the dark matter partner

Mass Difference

- The radiative correction makes charged partners heavier
- Without EWSB, there's no mass difference
 - **Higgs VEV** *v* is the typical scale
- $\Delta M \simeq Q^2 \alpha_2 M_W \sin^2 \frac{\theta_W}{2} \simeq Q^2 166 \,\text{MeV} \ll M_\chi$

Decay Mode and the Lifetime

- The Main decay mode is $\chi^{Q+1} \to \chi^Q \pi^+$
 - Width: $\Gamma \sim G_F^2 f_\pi^2 \Delta m^3$
- The lifetimes are macroscopic!
 - $\tau(\chi^{2+}) \sim 1 \, \text{mm}$
 - $\tau(\chi^+) \sim 1.7 \, \mathrm{cm}$

χ^+ Track in the Collider

- In ATLAS, the pixel detector begins at 3 cm.
 - χ⁺ may leave the disappearing track!
 - The p_T of π^{\pm} is not large enough to reconstruct its track
 - χ^{2+} lifetime is too short for the tracker
 - Due to the small Δm, it doesn't look as a displaced vertex

Setup for Disappearing Track Search

- χ^{2+} decay is almost instantaneously
- $c\tau(\chi^+ \to \chi^0 \pi^+) \sim 2 \text{ cm}$
 - Count how many disappearing tracks appear

Number of Signals

Production cross section for 13 TeV:

- Not so small
- Acceptance rate?

Cut and Acceptance Rate

- MFT cut
- Jet PT cut
- Geometrical cut on η
- Isolation
 - Acceptance: O(%)

Disappearing condition

• $\exp(-L/c\tau\gamma\beta_T)$

ATLAS Collaboration, arXiv:1712.02118

Look Inside the Tracker

Improvement to 2-point Search

 Interacting point is determined by the other jet activities

Result

Conclusions

- Disappearing track is important for minimal DM search
 - Including SUSY LSP like pure wino or higgsino
- We need to not only increase the energy but also improve trackers and analysis
- BG estimation & reduction is needed

Backup

What is the Background?

- Misidentification of kink tracks
 - Does not change much for 2-pt strategy
 - Also, the displaced vertex analysis can be used
- Fake disappearing tracks

ATLAS Collaboration, arXiv:1712.02118

Higgsino

Wino

