

Searches for additional charged Higgs bosons in the MSSM in ATLAS and CMS

SUSY18, Barcelona

Christian Autermann,

for the ATLAS and CMS collaborations

SPONSORED BY THE

Overview

- Introduction
 - LHC data and luminosity
 - Two Higgs-doublet models
 - Higgs triplet models
- H⁺ → tb
- $H^+ \rightarrow \tau \nu$
- $H^+ \rightarrow WZ$
- $H^{++} \rightarrow WW$, $H^{++} \rightarrow I^{+}I^{-}I^{-}$
- Conclusion

CMS Integrated Luminosity

Data included from 2010-03-30 11:22 to 20

 $H^{\pm} \rightarrow tb$

 $H^{\pm} \rightarrow \tau \nu$

 $H^{\pm} \rightarrow WZ$

Introduction

- No charged fundamental scalar in the SM
- Charged Higgs bosons H±:
 - e.g. MSSM
- coupling of the charged Higgs bosons to charged leptons and neutrinos
 - ~cot β in Type-I 2HDM
 - ~tan β in Type-II 2HDM,
 - where $\tan \beta$ is the ratio of the vacuum expectation values of the two Higgs boson doublets

Introduction

- Doubly charged Higgs bosons H⁺⁺, H⁻⁻:
 - left-right symmetric (LRS) models,
 - Higgs triplet models,
 - the little Higgs model,
 - type-II see-saw models
 - scalar singlet dark matter,
 - Zee–Babu neutrino mass model
 - Georgi–Machacek model,
 - scalar sector of the Standard Model (SM) is extended by the addition of one complex and one real SU(2) triplet.
 - hVV (and hhVV) coupling enhanced compared to the SM
 - presence of additional doubly charged scalars

ATLAS-HIG-17-004 to be subm. to JHEP

- dominant channel for m(H[±]) > m(top)
- one or two leptons (e, μ) + jets
- signal to background discrimination
 - using jet & b-tag multiplicities
 - MVA techniques (BDTs)
- limit extraction, 200 2000 GeV
 - simultaneous fit in signal-rich and in signal-depleted regions of BDT output dist.
 - per SR & m(H⁺)
 - tt+≥1b, tt+≥1c allowed to float

Pre-fit comparison of data to SM expectation

signal and control regions

CMS-HIG-14-023 *JHEP* 11 (2015) 018

- Legacy Run I result
 - still competitive limits with 8 TeV, 19.7 fb⁻¹
- individual analyses final states

• l+jets : single-lepton trigger (e, μ)

• τ^h + μ : single- μ trigger

• II: ee, $\mu\mu$, $e\mu$ trigger

statistically combined to final result

- Run II searches with higher statistics
 - better handle of systematics

CMS

10

$H^+ \rightarrow tb$

 $pp \rightarrow \bar{t}(b)H^{+}, H^{+} \rightarrow t\bar{b}$

/+jets, $\mu\tau_L$, // final states

Assuming B(H $^{+} \rightarrow t\overline{b}$) = 1

19.7 fb⁻¹ (8 TeV)

m_{⊔+} [GeV]

Model independent cross section limit

MSSM interpretation m_hmod scenario

 $H^+ \rightarrow tb$

m_{H+} [GeV]

ATLAS-HIG-16-011 to be subm. to JHEP

- dominant decay mode for light charged Higgs m(H[±]) < m(top)
 - \leftrightarrow complementary to H $^{\pm} \rightarrow$ tb
- $au^{\rm had}$ + jets, $au^{\rm had}$ + lepton final states depending on W decay mode
 - p_T^{miss}, lepton triggers used, respectively
- MVA discriminant, 90 2000 GeV
 - BDTs for both final states & 5 m(H[±]) bins
 - input variables include p_T^{miss} , object's p_T , b-tagging, $\Delta \phi$, ΔR , tau-polarization
- au^{had} background from MC
 - tt normalized to the data
- au au had from mis-ID of jets / e
 - data-driven estimation inverting BDT-score
 - from MC and validated in Z→ee CR

- fully hadronic final state
- τ^{h} and p_{T}^{miss} trigger
- ≥ 3 jets, one b-tag in central region
- τ^h and p_T^{miss} in back-to-back configuration

$$R_{\text{bb}}^{\min} = \min_{j \in j_1..j_3} \sqrt{\Delta \phi(\not E_T, j)^2 + (\pi - \Delta \phi(\tau^h, \not E_T))^2} > 40^{\circ}$$

- mis-ID au^h background at small $\mathsf{R}^{\mathsf{min}}_{\mathsf{bb}}$
 - QCD multijet production
 - data-driven estimation: isolation criteria inverted
- Genuine τ^h : Z/γ^* , Wjets, tW, tt
 - MC simulation
- signal sensitive variable m_T

$$m_{\mathrm{T}}^2 = 2 \cdot p_{\mathrm{T}}^{\tau^{\mathrm{h}}} | \vec{E}_T | \left(1 - \cos \Delta \phi(\vec{E}_T, \tau^{\mathrm{h}}) \right)$$

binned max. likelihood fit on m_T

model independent cross section limit

MSSM

20

10

Data / Pred.

1000

1500

 $m_{\tau}(WZ)$ [GeV]

- WZ jj electroweak vector boson scattering measurement
- exactly 3 leptons (e, μ)
- two jets: high m(jj), $\Delta \eta_{\rm jj}$, $\eta_{3\ell}^* = \eta_{3\ell} \frac{1}{2}(\eta_{j_1} + \eta_{j_2})$
- p_T^{miss} > 30 GeV
- veto cuts against
 - non-prompt leptons and Z: m(II), top: b-tag
- $Z\gamma$, WW, ZZ, EW WZjj: prompt leptons
 - from MC simulation
- QCD WZjj:
 - simulation normalized to data in control region (failing m(jj), η_{jj} , $\eta^*_{\rm 3l}$)
- non-prompt leptons: from data
 - "tight-to-loose" wrt lepton identification and isolation

$H^{\pm} \rightarrow W^{\pm}Z$

ATLAS-EXOT-16-011 arXiv:1806.01532

- VBF channel: Georgi-Machacek model
- 3 leptons (e, μ)

Similar backgrounds & estimation methods

- SM WZqq main background:
 - MC simulation validated in CR
 - inverting 100 < m $_{\rm jj}$ < 500 GeV or $\Delta\eta$ < 3.5
- ZZ, tZ, ttX: prompt leptons
 - MC simulation
- non-prompt leptons: γ or jet "fakes"
 - data-driven "Matrix method"
- background-only fit to the data
 - pulls < 1 s.d. compared to prefit values
- slight excess at m(WZ) \approx 450 GeV

$H^{\pm} \rightarrow W^{\pm}Z$

- SM WZjj measurement: $\sigma/\sigma_{SM} = 0.6\pm0.4$ @ 1.9 (2.7) s.d.
- H[±] narrow width assumption
- Combined fit of H[±] signal and WZjj background:

- Excess observed in VBF category only
- Excess at m(H $^{\pm}$) \approx 450 GeV: 2.9 s.d. (local), 1.6 s.d. (global)

CMS-SMP-17-004 <u>CDS</u>

- H⁺⁺ \rightarrow WW dominates for large Higgs triplet vacuum expectation value v_{Λ}
- Vector boson fusion (VBF)
- Higgs triplet Georgi-Machacek model
- two like-sign charged leptons e, μ
 - → little SM background
- p_T^{miss} > 40 GeV
- two jets: large m(jj), Δη (z_I*)
- veto cuts against
 - non-prompt leptons and Z: m(II), top: b-tag, WZ: 3^{rd} lepton (e, μ , τ)
- Discriminate s over b in $(m_{\parallel}, m_{\parallel})$ plane
- WW irreducible SM background: simulation
- WZ simulation normalized to data control
- non-prompt leptons:
 - from data (veto pass/fail)

$H^{++} \rightarrow I^{+}I^{+}$

- H⁺⁺ \rightarrow II dominates for small Higgs triplet vacuum expectation value v_{Δ}
- 2, 3, 4 lepton (e, μ) signal regions, 250 1300 GeV
- irreducible like-sign charged lepton SM background from W±W±, WZ, ZZ, ttX MC
- $\,\,\,$ non-prompt e, μ "fake" background
 - data-driven estimation from data-sideband regions
 - e.g. requiring no b-tagged jet
- Max. likelihood fit in m(ll), M in signal & control regions

$H^{++} \rightarrow W^+W^+$

- Limits on $\sigma_{VBF} \times B(H^{++} \rightarrow W^{+}W^{+})$
- EW W $^{\pm}$ W $^{\pm}$ measured to σ/σ_{SM} =0.9 \pm 0.2 @ 5.5 (5.7) s.d.

CMS-PAS-HIG-16-036 CDS $H^{++} \rightarrow I^{+}I^{+}$ includes associative production & taus 12.9 fb⁻¹, 13 TeV

$H^{++} \rightarrow |+|$

- H^{±±}_L and H^{±±}_R have different couplings to the Z
- lower limit on m(H^{±±}) between 660
 and 870 GeV for H_L & H_R, B(II)=1

for $B(H^{\pm\pm} \rightarrow I^{\pm}I^{\pm}) = 1$

Conclusion

- Several new results in different charged Higgs channels
 - many more results expected on the full Run II 13 TeV data
- No signs of physics beyond the standard model so far
- Age of "easy discoveries" at the LHC has gone; sensitivity will grow with ~√integrated luminosity, i.e. √time!
 - improving systematics with more statistics
- Only ~1% of high-luminosity LHC dataset analyzed so far
- Changes in analysis strategy:
 - Combinations
 - More specific final states
 - Sophisticated background suppression & signal identification
 - Difficult accessible signal phase-space
 - Unconventional signal models

•