Understanding gauge and top-bottom-tau Yukawa couplings

as IR fixed points in the MSSM with vectorlike family

with N. McGinnis, arXiv:1712.03527 with N. McGinnis, to appear

Radovan Dermisek

Indiana University, Bloomington

Standard model

Out of 17 dimensionless parameters:

$$\alpha_1, \alpha_2, \alpha_3, y_t, y_b, y_\tau, \lambda_h$$

all others = 0 (in the first approximation)

only 7 couplings are sizable

Are their values random or predictable?

In the MSSM+1VF

$$\alpha_1, \alpha_2, \alpha_3, y_t, y_b, y_\tau, \lambda_h$$

their values can be understood as IR fixed points

MSSM with a complete vectorlike family

We add to the MSSM:

$$Q,~ar{U},~ar{D},~L,~ar{E}~+~ar{Q},~U,~D,~ar{L},~E$$
 or $16~+~\overline{16}$ in SO(10) language

We consider:

universal Yukawa coupling at the GUT scale:

$$y_t = y_b = y_\tau \equiv Y_0$$

motivated by SO(10)

- ullet universal Yukawa c. of vectorlike fields at the GUT scale: Y_V
- ullet common scale for superpartners: M_{SUSY}
- ullet common scale for vectorlike matter: M_V

often we identify the two scales: $M_{SUSY} = M_V \equiv M$

Gauge couplings in MSSM+1VF

1 loop RG equations:

$$\frac{d\alpha_i}{dt} = \beta(\alpha_i) = \frac{\alpha_i^2}{2\pi}b_i$$

$$b_i = (33/5, 1, -3) + n_5(1, 1, 1) + 3n_{10}(1, 1, 1)$$

Solution:

$$\alpha_i^{-1}(M_Z) = \frac{b_i}{2\pi} \ln \frac{M_G}{M_Z} + \alpha^{-1}(M_G)$$

Two parameter free predictions:

$$\frac{\alpha_j(M_Z)}{\alpha_i(M_Z)} \simeq \frac{b_i}{b_j}$$

Weak mixing angle

robust prediction away from the GUT scale

Weak mixing angle

for any $\alpha_G>0.3$ and superpartners above 1 TeV vectorlike matter is expected below 20 TeV

Optimal VF and GUT scales in MSSM+1VF

huge range of parameters results in observed pattern of gauge couplings

Varying unified gauge coupling

Optimal VF and SUSY scale in MSSM+1VF

For any $\alpha_{\rm G}>0.3\,$ VF or SUSY expected within 1.7 TeV (2.5 TeV) based on all three gauge couplings being simultaneously within 1.5% (5%) from observed values.

(extends to ~4 TeV for $lpha_{\mathbf{G}} > \mathbf{0.2}$)

gauge couplings point (independently of the Higgs mass) to a multi-TeV scale for VF and SUSY

Top-bottom-tau IR fixed points

Top-bottom-tau IR fixed points

very sharp IR fixed point predictions again point to a multi-TeV scale for VF and SUSY

Exploring the parameter space

Gauge couplings and tau mass are fit to central values:

exact Yukawa coupling unification possible

Exploring the parameter space

Everything fit to central values except for bottom mass:

fitting bottom mass in the whole plane requires SUSY corrections of a typical size

fitting everything suggests M = 3 - 10 TeV!

MSSM with a complete vectorlike family

with vectorlike masses and superpartners at multi-TeV

for randomly generated: $\alpha_G \in [0.1, 0.3], Y_0 \in [1, 3], Y_V \in [1, 3]$ $M_G = 3 \times 10^{16} \text{ GeV}, M_{SUSY} = M_{VF} = 5 \text{ TeV}, \tan \beta = 40$

(larger values of couplings do not affect results significantly)

provides an understanding of all large couplings in the SM as IR fixed points

Comment on Naturalness

EWSB with multi-TeV SUSY is viewed as very fine-tuned

based on intuition that contributions of two parameters precisely cancel only if parameters are carefully chosen/tuned usually demonstrated by small probability in scans, sensitivity measures...

However, SUSY models typically have a handful of parameters that significantly contribute to the determination of the EW scale.

What is a tuned outcome in a model with 2 parameters may be a completely ordinary outcome in a more complex model, e.g.:

10 random choices of handful of SUSY parameters will produce an outcome with the EW scale ~2 orders of magnitude smaller (no parameter has to be chosen carefully). With increasing the complexity, more "special/extreme/unexpected" outcomes become ordinary.

for more discussion, see:

RD, arXiv:1611.03188; RD and N. McGinnis, arXiv:1705.01910

Conclusions

In the MSSM+1VF with vectorlike matter and superpartners at a multi-TeV scale:

$$\alpha_1, \alpha_2, \alpha_3, y_t, y_b, y_\tau, \lambda_h$$

can be understood as a consequence of the particle content of the model!