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I. Introduction
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Dark matter (DM) halo mass deficit?
(core/cusp problem)

�3

1.  DM cores are preferred by observed 
circular velocities in dwarf/LSB galaxies; 
 [Moore 1994; Burkert 1995,  …] 
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(core/cusp problem)
1.  DM cores are preferred by observed 
circular velocities in dwarf/LSB galaxies; 
 [Moore 1994; Burkert 1995,  …] 

(too-big-to-fail problem)

2.  Non-observation of massive sub-halos 
which should host brightest dwarfs predicted 
by simulations. [M.Boylan-Kolchin et al. 2011, 2012]
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Dark matter (DM) halo mass deficit?

3. Some globular clusters are expected to 
sink to the center if dwarf-sized halos are 
cuspy. [J. Binney & 
S.Tremaine 2008,  …]

(timing problem)

1.  DM cores are preferred by observed 
circular velocities in dwarf/LSB galaxies; 
 [Moore 1994; Burkert 1995,  …] 

(too-big-to-fail problem)

(core/cusp problem)

2.  Non-observation of massive sub-halos 
which should host brightest dwarfs predicted 
by simulations. [M.Boylan-Kolchin et al. 2011, 2012]
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Baryonic effects? Self-interacting dark matter?

 Strong DM self-scattering            ➡       inner halo DM self-thermalization
                                                                              (heating up the halo center)

         Observational evidence for self-interacting cold dark matter 
D.N. Spergel and P J. Steinhardt  [astro-ph/9909386]
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Problems: strong bounds exist & difficult to achieve such large interactions

Baryonic effects? Self-interacting dark matter?
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II. Heating via DM self-
annihilation
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DM + DM ! DM + �light

kinetic energy gain:        ~ DM mass 

DM + DM ! DM + �lightDM + DM ! DM + �light

A fraction of its kinetic energy,            , is absorbed by the halo via

�E

⇠ · �E

Semi-annihilation

DM self-heating mechanism
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DM self-heating mechanism

annihilation rate per particle

DM + DM ! DM + �light

kinetic energy gain:        ~ DM mass 

A fraction of its kinetic energy,            , is absorbed by the halo via

Such semi-annihilation increases the halo entropy with a rate (per DM particle) :

�E

⇠ · �E

Semi-annihilation

ds ⌘ dU
T ⇠ ⇠·�E

T
⇢

mDM
h�vsemii

DM + DM ! DM + �lightDM + DM ! DM + �light

T ' mDMv20
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Two important quantities: 
1. The energy absorption efficiency      (from scattering) :            ⇠

⇠ ⇠ rs
mDM/(⇢DM�SI)

' 10�3
⇣

rs
5 kpc

⌘⇣
⇢DM

M�/pc3

⌘⇣
�SI/mDM

10�3 cm2/g

⌘
can be estimated by the ratio of halo radius to DM mean-free-path 

ds ⌘ dU
T ⇠ ⇠·�E

T
⇢

mDM
h�vsemii

Heat absorption 
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2. The effective ratio  J:            ⇠�E
T ⇠ O(106) · ⇠

10�3 ·
⇣

10 km/s
vDM

⌘2

b) The effect is larger at lower velocities (e.g. in dwarf-sized halos),
     being similar to velocity-dependent SIDM (so less constrained). 

a) It leads to significant enhancements.

Two important quantities: 
1. The energy absorption efficiency     :            ⇠

⇠ ⇠ rs
mDM/(⇢DM�SI)

' 10�3
⇣

rs
5 kpc

⌘⇣
⇢DM

M�/pc3

⌘⇣
�SI/mDM

10�3 cm2/g

⌘
can be estimated by the ratio of halo radius to DM mean-free-path 

ds ⌘ dU
T ⇠ ⇠·�E

T
⇢

mDM
h�vsemii

Heat absorption 
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Comparison with SIDM

ds ⌘ dU
T ⇠ ⇠·�E

T
⇢

mDM
h�vsemii ds ⇠ ⇢

mDM
h�vSIi

self-heating self-interacting
�SI

mDM
⇠ 0.1–10 cm2/g

    Note: annihilation                  is velocity-independent, while for scattering,         is.ds ⌘ dU
T ⇠ ⇠·�E

T
⇢

mDM
h�vsemii �SI

In order to achieve similar effects with semi-annihilation, one needs:

J�1 ⇠ 10�6

leading to the observed abundance for sub-GeV thermal DM.

h�vsemii ⇠ T
⇠�E ⇥ cm2/g⇥ v ⇠ 3⇥10�26cm3/s

0.1GeV

10�5c – 10�4c
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The halo is numerically modelled as a gravo-thermal 
fluid [K.-J. Ahn & P. R. Shapiro, 2005] :

Numerical results (with simplifications)

⍴

(initially)

(density)

(pressure)

(gravity)

(entropy)
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⍴

Numerical results (with simplifications)

1. Heat/entropy ejection creates a radial DM outflow:

     

             (here heat conduction is only sub-leading)

2. For self-heating DM, the dynamical time-scale  

     should be close to the age of Universe.

(initially)
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1.  Entropy needed agrees with existing simulations of slowly-decaying DM [M. V. 

Medvedev 2013,  M.-Y. Wang et al. 2014]  and gravitational energy argument  [T.K. Chan et al. 2014] .

2.  Cosmological simulations are required to verify this simplified picture. 

Numerical results (with simplifications)

⍴

(initially)1. Heat/entropy ejection creates a radial DM outflow:

     

             (here heat conduction is only sub-leading)

2. For self-heating DM, the dynamical time-scale  

     should be close to the age of Universe.
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Experimental constraints:

 (s-wave)
Black solid lines for various 

energy absorption efficiencies 
give parameters that address the 

mass-deficit problem in DM 
sub-halos.
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a) If           results in electromagnetic particles:

Experimental constraints:

�light

�SI
mDM

⇠ O(10�2) cm2/gMildly strong self-scattering is required:

b) If           only decays invisibly, no CMB/AMS-02 constraints.�light

Black solid lines for various 

energy absorption efficiencies 
give parameters that address the 

mass-deficit problem in DM 
sub-halos.

 (s-wave)

N
e↵

(
f
r
e
e
z
e
-
o
u
t
)



SUSY 2018 (Barcelona) 12

Further issues:

1. Halo merging history may lead to more massive halos with 
shallower cores. [M. Boylan-Kolchin & C-P. Ma 2003, …]

3. Baryonic contraction/feedback need to be taken into account, 

just like the case of self-scattering DM. [A. Kamada et al. 2016, O. Sameie et al. 

2018, …]

2. Small halos are unstable since its gravitational binding energy 

may be smaller than the energy absorbed. [S. Schon et al. 2014, …]

M
halo

� O(105)M�
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III. Conclusions
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• Halo mass deficit may be hint of non-conventional DM; 

• DM can heat up itself via semi-annihilation (by adding certain 
self-scattering)

• Much smaller interaction strength is needed;

• Velocity-dependence can be achieved naturally.

• The mechanism suggests relations between DM mass deficit 
and (sub-)halo size/age.

• Cosmological simulations are required (dependence of the 
absorption rate on SIDM, halo evolution with time, baryons …).

Conclusions



SUSY 2018 (Barcelona)

Thanks! 
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Evidences of Dark Matter (DM)Solving diversity problem in SIDM

[A. Robertson et al.   1711.09096]

[1504.01437]
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Evidences of Dark Matter (DM)

Arxiv: 1411.3783

 DM heating up visible astrophysics

Arxiv: 0705.0521

 Giant stars that are powered by DM annihilation…

Arxiv: astro-ph/0606483

 Evacuating gas and increasing the gas temperature…

 Delaying the formation of first galaxies…

A few previous studies for baryonic astrophysics:
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Evidences of Dark Matter (DM) Semi-annihilating DM + SIDM in early Universe

 It heats up dark matter particles, leading to larger DM free-steaming length.
       [A. Kamada, H. J. Kim, and H. Kim, (2018)]


