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Dark matter (DM) halo mass deficit?

core/cusp problem
1. DM cores are preferred by observed Central density

circular velocities in dwarf/LSB galaxies; ) cusp predicted by
cold dark matter

[Moore 1994; Burkert 1995, ...] /

Observed
‘e

Dark matter halo
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Dark matter (DM) halo mass deficit?

core/cusp problem

1. DM cores are preferred by observed Central density
circular velocities in dwarf/LSB galaxies; cusp predicted by

cold dark matter
[Moore 1994; Burkert 1995, ...] \

Observed

2. Non-observation of massive sub-halos
which should host brightest dwarfs predicted
by simulations. [M.Boylan-Kolchin et al. 2011, 2012]

Dark matter halo

(too-big-to-fail problem)
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bright MW dwarf spheroidals o L 80
(95.4% confidence)
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Dark matter (DM) halo mass deficit?

core/cusp problem

1. DM cores are preferred by observed Central density

circular velocities in dwarf/LSB galaxies; cusp predicted by
cold dark matter

[Moore 1994; Burkert 1995, ...]

2. Non-observation of massive sub-halos
which should host brightest dwarfs predicted
by simulations. [M.Boylan-Kolchin et al. 2011, 2012]

Dark matter halo

(too-big-to-fail problem)

20 g 3. Some globular clusters are expected to
bright MW dwarf spheroidals @ 80 _ ) i
) 0 sink to the center if dwarf-sized halos are
10_- ™Y i .
s :.% . * 60 CUSPY. [J. Binney &

S.Tremaine 2008, ...]

30 (timing problem)

— 20

20 30 40 50 60 70 80 90
Viax |km/s] Boylan-Kolchin et al. 2011
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Baryonic effects? Self-interacting dark matter?

Observational evidence for self-interacting cold dark matter

D.N. Spergel and P J. Steinhardt [astro-ph/9909386]

Infalling dark matter is scattered before
reaching the center of the galaxy so that the orbit dis-
tribution is isotropic rather than radial. These collisions
increase the entropy of the dark matter phase space dis-
tribution and lead to a dark matter halo profile with a
shallower density profile.

Strong DM self-scattering - inner halo DM self-thermalization
(heating up the halo center)

IS (0.1-10 cm? /g plovst) , 1
MpM mMpM tage
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Baryonic effects? Self-interacting dark matter?

Observational evidence for self-interacting cold dark matter

D.N. Spergel and P J. Steinhardt [astro-ph/9909386]

Infalling dark matter is scattered before
reaching the center of the galaxy so that the orbit dis-
tribution is isotropic rather than radial. These collisions
increase the entropy of the dark matter phase space dis-
tribution and lead to a dark matter halo profile with a
shallower density profile.

Strong DM self-scattering - inner halo DM self-thermalization
(heating up the halo center)

IS (0.1-10 cm? /g plovst) , 1
mpM mpmM tage

Problems: strong bounds exist & difficult to achieve such large interactions
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Il. Heating via DM selt-
annihilation
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DM self-heating mechanism

Semi-annihilation DM + DM — DM + @ight

kinetic eneréy gain: o FE~ DM mass

A fraction of its kinetic energy, £ - 0 F, is absorbed by the halo via

DM + DM — DM 4+ DM
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DM self-heating mechanism

Semi-annihilation DM + DM — DM + @ight

kinetic eneréy gain: o FE~ DM mass

A fraction of its kinetic energy, £ - 0 F, is absorbed by the halo via

DM + DM — DM 4+ DM

Such semi-annihilation increases the halo entropy with a rate (per DM particle) :

— dU Eo0F p .
ds = T ~ T mpu <0_Usem1>
1~ mDMvg annihilation rate per particle
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Heat absorption

— dU EOFE  p .
ds = T ~ T mom <UUsem1>

Two important quantities:

1. The energy absorption efficiency f (from scattering) :

can be estimated by the ratio of halo radius to DM mean-free-path

~ s ~ —3 [ _Ts P os1/MDM
f mpwm/(ppDMOosT) 10 (Skpc) (M@D/I\S(ﬁ) (10_3 sz/g)
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Heat absorption

_ dU EOFE p |
ds = T ~ T mom <UUsem1>

Two important quantities:

1. The energy absorption efficiency f :

can be estimated by the ratio of halo radius to DM mean-free-path

N rs 3( _rs p as1/m
5 mpwm/(ppDMOosT) ~ 10~ (5kpc) (M@D/I\S(ﬁ) (108_13 Crr?;\;g)

2
2. The effective ratio 7: &STE ~ 0(106) : L_S . (10km/s)
. UDM

> .
a) It leads to significant enhancements.

“
-
-
—‘
-
-
-

b) The effect is larger at lower velocities (e.g. in dwarf-sized halos),
being similar to velocity-dependent SIDM (so less constrained).
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Comparison with SIDM

75~ (.1-10cm? /g

self-heating self-lnteractlng mp
ds = djg ~ fng m[p)M <0-Usemi> ds ~ mDM <O-USI>

Note: annihilation <0 Usemi> IS velocity-independent, while for scattering, 0s1 is.

In order to achieve similar effects with semi-annihilation, one needs:

. T 2 3x10~“®cm? /s
(OVsemi) ~ g5 X M7/ XV ~ —F7aey

014"—

106 107 °¢c—10"4

leading to the observed abundance for sub-GeV thermal DM.
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Numerical results (with simplifications)

The halo is numerically modelled as a gravo-thermal
fluid [K.-J. Ahn & P. R. Shapiro, 2005] :

Op p’
-~ T V- (pV) — _E<0—’Usemi> )

(density)
ot

NFW (initially)

oV
pl 27 +(VV-V)V | = —pV® —-Vp, (pressure) p 10
ot '
V2® = 47nG(pn + ) . (gravity) 10
(% 1v.vs) =% L % 107! .
ot 0t conduction ot absorption '
"2 I 1 L JI_
(entropy) 102 107 10° 10’ 102
rir
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Numerical results (with simplifications)

1. Heat/entropy ejection creates a radial DM outflow: , NEFW (initially)

10— - r— r _O— T

D | | . =0

V — 3m <vaeml>jr 102 : ______ : ______ :_ - _-_-;_' _t?Q'ltj_:_

(here heat conduction is only sub-leading) R

D 10 LN RSN N - =+ 1= 10tg L

2. For self-neating DM, the dynamical time-scale Y IR A N o '
b= — " 5 |

J = ' ' '

Po{TVsemi) T 107 pmm e\ ;

should be close to the age of Universe. | ' i : :
10— | 1 L A
102 10~ 10° 10’ 10

rir
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Numerical results (with simplifications)

1. Heat/entropy ejection creates a radial DM outflow: . NEFW (initially)
V = 3%<vaemi>jr 102
(here heat conduction is only sub-leading)
0 10’
2. For self-nheating DM, the dynamical time-scale 10
ty = e .
P0(TVsemi) T 10~ .
should be close to the age of Universe. 1o . . . L
102 10~ 10° 10’ 10

rir

1. Entropy needed agrees with existing simulations of slowly-decaying DM M. v.
Medvedev 2013, M.-Y. Wang et al. 2014] and gravitational energy argument [TK. Chan etal. 2014].

2. Cosmological simulations are required to verify this simplified picture.
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Experimental constraints:

Black solid lines for various

~
NG

(

i
s
-~

mass-deficit problem in DM

sub-halos.
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Experimental constraints:

Black solid lines for various

energy absorption efficiencies
give parameters that address the
mass-deficit problem in DM

sub-halos.

a) If ¢iight results in electromagnetic particles:

Mildly strong self-scattering is required: 23 ~ ((1072) cm?/g

mpwm

b) If ¢Piight only decays invisibly, no CMB/AMS-02 constraints.
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Further issues:

1. Halo merging history may lead to more massive halos with

shallower cores. [v. Boylan-Kolchin & C-P. Ma 2003, ...]

2. Small halos are unstable since its gravitational binding energy

may be smaller than the energy absorbed. [s. schon et al. 2014, .. ]

Mhaio > O(10°) M

3. Baryonic contraction/feedback need to be taken into account,

jUSt like the case of Self-scattering DM. [A. Kamada et al. 2016, O. Sameie et al.

2018, ...]
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11l. Conclusions
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Conclusions

 Halo mass deficit may be hint of non-conventional DM;

e DM can heat up itself via semi-annihilation (by adding certain
self-scattering)

 Much smaller interaction strength is needed;
* Velocity-dependence can be achieved naturally.

* The mechanism suggests relations between DM mass deficit
and (sub-)halo size/age.

e Cosmological simulations are required (dependence of the
absorption rate on SIDM, halo evolution with time, baryons ...).

SUSY 2018 (Barcelona)
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Thanks!
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Solving diversity problem in SIDM

K. A. Oman et al.

[1504.01437]

100 .

80

60

40

M UGC5721
DMO sims: LG-MR + EAGLE-HR,

Y UGC 11707
DMO sims: LG-MR + EAGLE-HR,

- 20 - V=89 km st +£10% [113] = V=101 kms™' +10% [73] |
|w Hydro sims: LG-MR + EAGLE-HR, || Hydro sims: LG-MR + EAGLE-HR,
= V=89 km st +£10% [113] = V=101 km s7t +10% [73]
ﬁel 0 : | I : | I I I } I I
g
S 80f
A LSBF583-1 ® IC2574
DMO sims: LG-MR + EAGLE-HR, DMO sims: LG-MR + EAGLE-HR,
20 — V,.=80kms ! +10% [149]
Hydro sims: LG-MR + EAGLE-HR, || /] 1@ Hydro sims: LG-MR + EAGLE-HR,

— V,..=88 kms™ +10% [120]

max

4 6 8 10 12

Radius [kpc]

0

4 6 8 10 12 14

kS

-"0\\ CE-12 -==- CDM-+baryons total
10°4 " *e SIDM ---- SIDM only

f SIDM analytical
108 = SIDM

: N stars

7| = \\\\\ o gas
. *op, T o tolal

[A. Robertson et al.

1711.09096]
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DM heating up visible astrophysics

A few previous studies for baryonic astrophysics:

Dark matter and the first stars: a new phase of stellar evolution
Arxiv: 0705.0521

Douglas Spolyar!, Katherine Freese?3, and Paolo Gondolo*

Giant stars that are powered by DM annihilation...

The impact of dark matter decays and annihilations on the
formation of the first structures Arxiv: astro-ph/0606483

E. Ripamonti!, M. Mapelli?, A. Ferrara?

Evacuating gas and increasing the gas temperature...

Dark Matter Annihilation in the First Galaxy Halos
Arxiv: 1411.3783

S. Schon'*, K. J. Mack!?3, C. A. Avram'?, J. S. B. Wyithe!? and E. Barberio'*

Delaying the formation of first galaxies...
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Semi-annihilating DM + SIDM in early Universe

It heats up dark matter particles, leading to larger DM free-steaming length.

[A. Kamada, H. J. Kim, and H. Kim, (2018)]
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