

Jet Observables and Stops at 100 TeV Collider

Collaboration with JiJi Fan, Prerit Jaiswal 10.1103/PhysRevD.96.036017 [1704.03014]

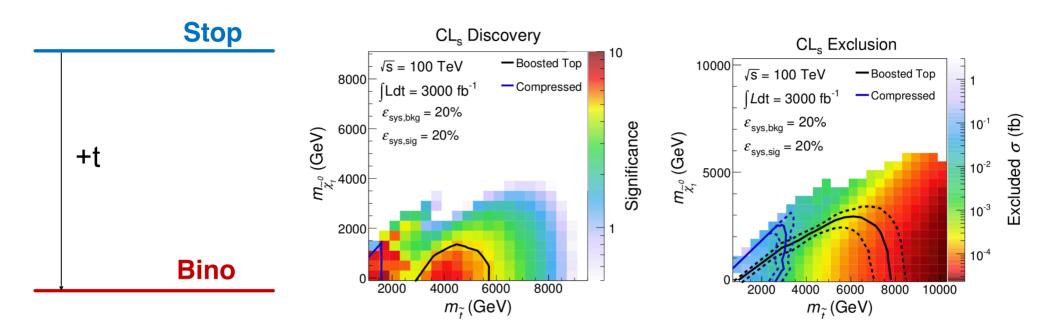
John Shing Chau Leung Brown University Jul, 2018

Motivation for a new collider

Once HL-LHC is done. What's next? Discovery Machine: 100 TeV Collider

- Give the final verdict on fine-tuning in SM, down to 10⁻³–10⁻⁴.
- Theoretical motivation... (Spannowsky, Neubert yesterday)
- An exploratory machine. For generic physics involving high mass states, a large centre
 of mass energy provides the most direct access to new physics!

[Arkani-Hamed, Han, Mangano, Wang, 1511.06495]

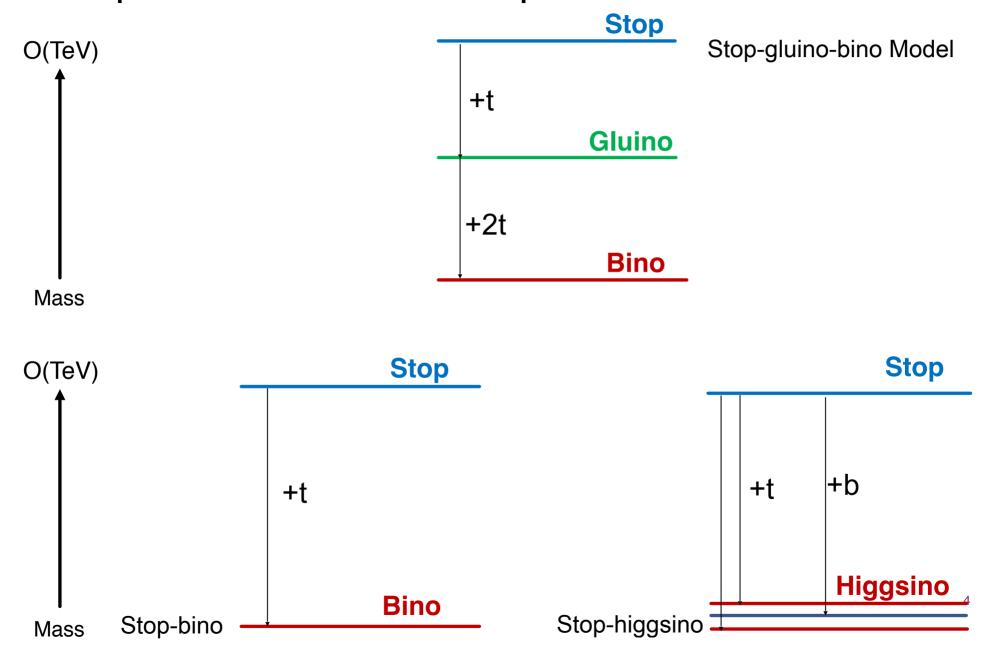

In $a\sqrt{s} = 100 \,\text{TeV}$ hadron collider,

Very hadronic environment;

SM objects are boosted and collimated.

→ Jet substructure techniques are needed to extract physics!

Previous work



Previous study investigated simple stop-LSP model in $\sqrt{s} = 100\,$ TeV collider using mostly kinematics variables.

[1406.4512, Cohen, D'Agnolo, Hance, Lou, Wacker]

We will investigate the reach of more complicated models with stop-gluino-LSP and higgsino LSP scenario.

Simplified model's mass spectrum

Method

Cross-section:

 $SUSY\ process \rightarrow\ NLO\ +\ NNLL$

SM process → Madgraph LO

Event generation:

Madgraph5 → Parton-level event

Pythia8 → parton-shower and hadronization

Delphes → Detector

SM Background:

QCD,
$$t\bar{t}$$
, $W/Z + \text{jets}$, $t + W/Z$ +2 jets
 $t\bar{t} + W/Z$ +1 jet

$$\tilde{t} - \tilde{g} - \tilde{\chi}^0$$
 Models

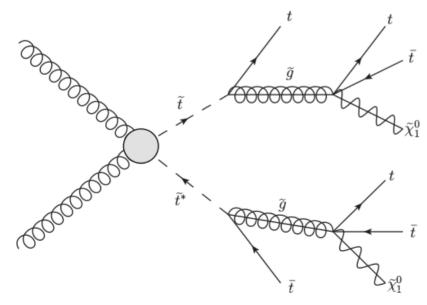
Stop

stop-gluino-LSP model

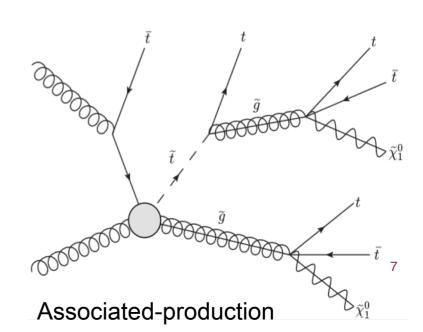
+t

Gluino

Bino


+2t

Two production channels (stop-pair and stop-gluino associated)


Final states: 6t + MET

The busy jet environment makes hard MET cut difficult

Stop-gluino-bino Model

Cut Flow

Kinematic cuts

(Schoenenberger, Weber Monday)

 $H_T > 4 \text{ TeV}, \text{ MET} > 250 \text{ GeV}$

No $p_T > 35$ GeV isolated lepton

200 GeV jets > 6 and ISRs (p_T hierarchy < 0.2, $|\eta| > 2$) < 2

 $|\Delta \phi(j, \mathbb{Z}_T)| > 0.5$ for any jet with p_T > 500 GeV

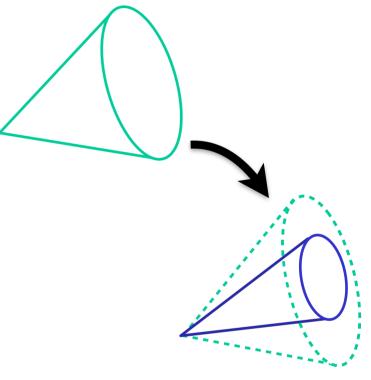
 $\tilde{t}\tilde{t}^* + \tilde{t}\tilde{g} = 6.5$ k events QCD = 10^7 events + other SM background!

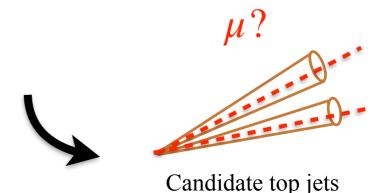
Top-tagging $(m_j, \tau_{3,2}, x_u)$

Need hadronic top tag.

Refined HT and MET cut

Top-tagger and Jet clustering algorithm

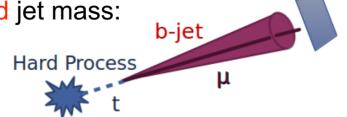

[1503.03347, Larkoski, Maltoni, Selvaggi]


- 1. Cluster a C/A fat jet with R=1.0
- 2. Scale down the jet by reclustering anti-k_T jet with dynamical jet radius to remove radiation

$$R(p_T) = \frac{Cm_t}{p_T}$$
 $C \sim O(1)$ constant

3. Look for $p_T > 200$ GeV muon within the jet radius.

If so, \rightarrow leptonic top tagger else, \rightarrow hadronic top tagger

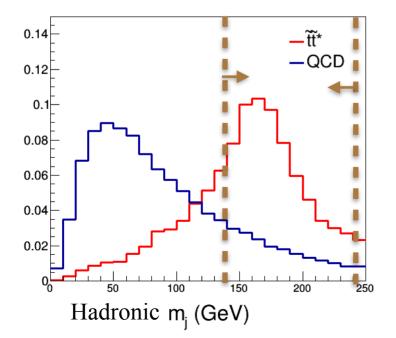


Jet mass (m_j) discriminant

Reconstructing the top mass from the track-based jet mass:

$$m_j = m_j^{\text{(track)}} \frac{p_T^{\text{(total)}}}{p_T^{\text{(track)}}}$$

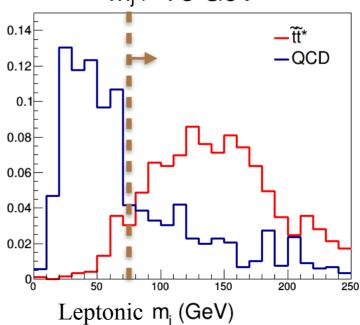
m_i ≈ m_{top} for a top jet



Calorimeter cell

Calorimeter too small to resolve jet substructure!

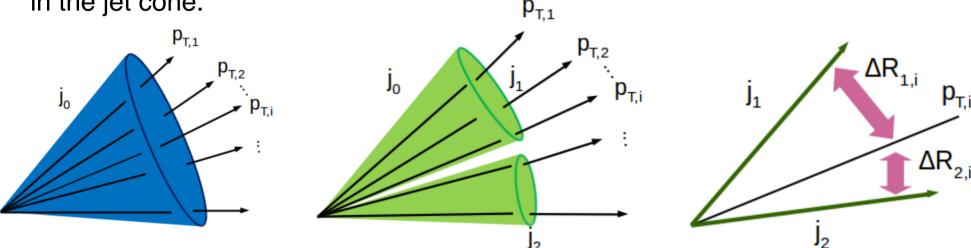
Hadronic top tagger


 $140 \text{ GeV} < m_i < 240 \text{ GeV}$

Leptonic top tagger

MET from neutrino forbids complete mass reconstruction

$$m_j > 75 \text{ GeV}$$


Hadronic top-tagger: N-subjettiness (τ_N)

[J. THALER AND K. VAN TILBURG, 11]

How much does jet "looks like" from a N-body decay?

N-subjetiness $(\tau_N) \rightarrow$ how close are the jet constituents are from N sub-jet axes

in the jet cone.

Identify the jet constituents to be reclustered

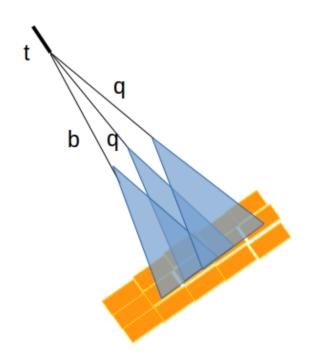
Recluster N subjets

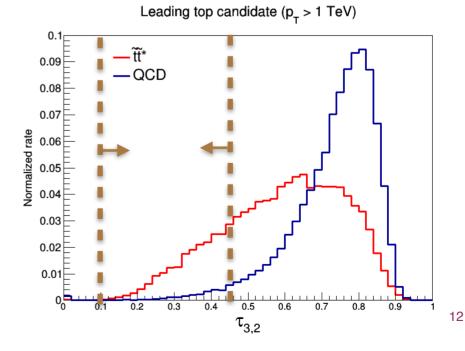
Find the distance $\Delta R_{k,i}$ between the i-th constituents and k-th subjet axis

$$\tau_N^{(\beta)} = \frac{1}{R_0} \sum_{i} p_{T,i} \min(\Delta R_{1,i}^{\beta}, \Delta R_{2,i}^{\beta}, ..., \Delta R_{N,i}^{\beta})$$

p_{T, i} — transverse momentum of ith jet constituent $\Delta R_{k,i}$ — distance between kth subjet and ith constituent

Hadronic top-tagger: N-subjettiness (τ_N)

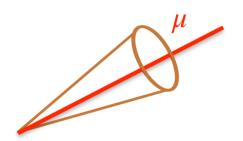

Hadronic top is a 3-prong object


$$t \rightarrow Wb \rightarrow q\overline{q}b$$

Top-jet will have small τ_3 and large τ_2 .

QCD jet will have evenly distributed τ_3 and τ_2 .

 τ_3/τ_2 is a good discriminant variable. $0.1 < \tau_3/\tau_2 < 0.45$ is the top-tag window.



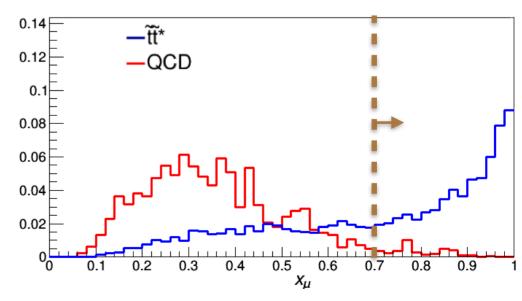
QCD vs hadronic top

Leptonic top-tagger: Mass-drop (x_{μ})

[THALER AND WANG, 08; REHERMANN AND TWEEDIE, 11]

Leptonic top decays with a hard muon carrying a significant portion of energy-momentum $t \rightarrow b\mu\nu$. Mass-drop looks at the portion of muon contribution to jet-mass:

$$x_{\mu} = 1 - \frac{m_{j \mu}^2}{m_j^2}$$

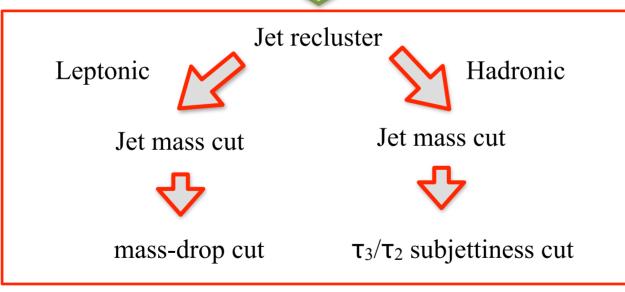

$$m_j$$
 — full jet mass

$$m_{j\mu}$$
 — jet mass without muon

Leptonic top will fail to reconstruct mass once muon is removed: $x_{\mu} \rightarrow 1$.

QCD jet mass does not tend to change since the muon is just a part of radiation.

Acceptance is $x_{\mu} > 0.7$



Cut Flow Recap

 $H_T > 4$ TeV, MET > 250 GeV No $p_T > 35$ GeV isolated lepton Number of jet and ISR cut $|\Delta\phi(j,E_T)| > 0.5$ for any jet with $p_T > 500$ GeV

Kinematic cuts

Top-tagger X 3

Stop mass reach

$m_{\tilde{t}}$ (TeV)	S	В	σ
5.5	10.7	1.7	6.3
6.0	10.0	6.7	3.5

10% systematics

 3σ can be reached for the benchmark point of 6 TeV stop and 2.75 TeV of gluino at L = 30 ab^{-1} .

An increased L is needed due to high the high SUSY background.

Gluino mass Reach

A gluino mass reach to 11 TeV at L = 3 ab⁻¹ (pair-production channel).

$m_{\widetilde{g}}$ (TeV)	Top tags	S	В	σ
10.0	2	12.4	0.8	8.1
11.0	1	13.8	9.5	3.9

10% systematics

~2 TeV improvement compared to the same sign Di-lepton gluino search in [1311.6480].

 $\tilde{t} - \tilde{B}$ Model and $\tilde{t} - \tilde{H}$ Model

Search Strategy Stop-Bino/Higgsino

Stop

Which one is the signal?

Higgsinos $\tilde{t} \longrightarrow b\tilde{\chi}^{\pm} \longrightarrow b\tilde{\chi}_{1}^{0}j^{(\text{soft})}$ $\tilde{t} \longrightarrow t\tilde{\chi}_{1}^{0}$ $\tilde{t} \longrightarrow t\tilde{\chi}_{1}^{0}$

- The environment is clean. Hard MET cut is possible.
- Stop-bino model always decay to top.
- Stop-higgsino model decay 50% of time to top and 50% to bottom

Search Strategy Stop-Bino/Higgsino

Two anti- k_T jets with $p_T > 1$ TeV;

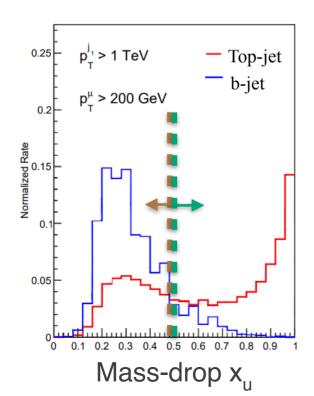
No isolated lepton with $p_T > 1$ TeV;

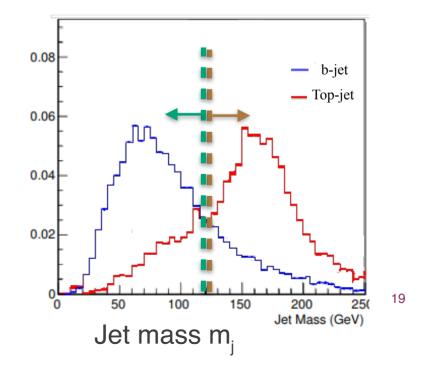
 $|\Delta\phi(j, \mathbb{Z}_T)| > 0.5$ for any jet with p_T > 500 GeV; MET > 3 TeV **Kinematic cuts**

Muon $p_T > 200$ GeV inside one of the jets

Muon-in-jet does not select leptonic top. Boosted b-jet also contains hard muons!

Further selection on hadronic jets needed!


Boosted top / b-jet tagger

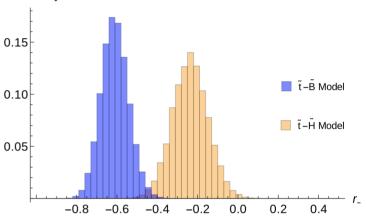

Search Strategy Stop-Bino/Higgsino

After passing through the muon-in-jet requirement. We partition the events into two possibilities using jet mass and mass-drop:

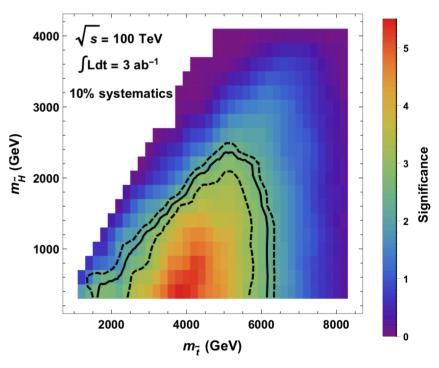
Hadronic top jet

Boosted top jet ($\tilde{t} \longrightarrow t\tilde{\chi}^0$): $\underline{m_j} > 120 \text{ GeV}$ OR $\underline{x_u} > 0.5$ Leptonic top jet Boosted b-jet ($\tilde{t} \longrightarrow b\tilde{\chi}^{\pm}$): $\underline{m_i} < 120 \text{ GeV}$ AND $\underline{x_u} < 0.5$

The stop-bino and stop-higgsino model signature Probability differs in the b-jet signature.


We define the variable

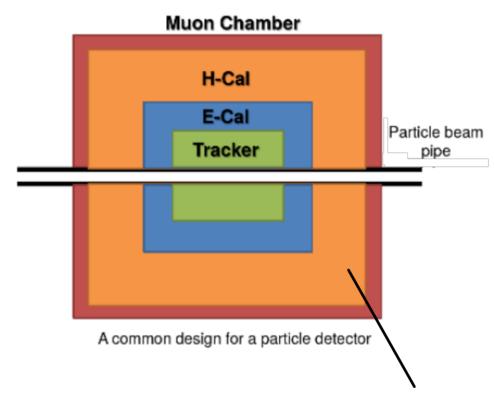
$$r_{-} = \frac{N_b - N_t}{N_b + N_t}$$


 $N_b = \#$ of boosted b-tagged events $N_t = \#$ of boosted top-tagged events

Stop-higgsino has 50% b-jet and 50% top jet. $r_{-} \sim 0$ Stop-bino 100% top jet. Hence $r_{-} \sim -1$

Model-distinguishability Reach: $\{m_{\tilde{t}} \sim 6 \text{ TeV}, m_{\tilde{\chi}} \sim 2 \text{ TeV}\}$

r distribution over the life time of the experiment


95% confident level

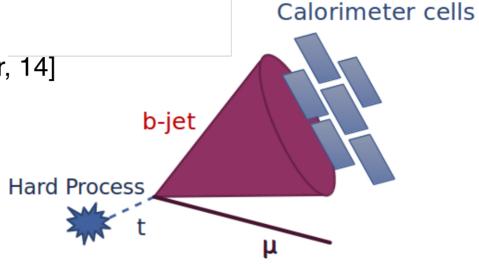
Summary and future work

- Stop-Gluino-LSP model mass reach 6 TeV (L = 30 ab⁻¹). Gluino mass reach 11 TeV (L = 3 ab⁻¹). Stop-Bino/Higgsino discovery mass reach at 7 TeV, model identification reach at 6 TeV (L = 3 ab⁻¹). Yet to be improved by BDT, NN and various other observables!
- A 100 TeV collider will extend our understanding to the naturalness of Standard Model and help exploring new physics.
- Jet substructure technique is a necessary and powerful tool to extract physics from a 100 TeV collider. Help make the case for future colliders.

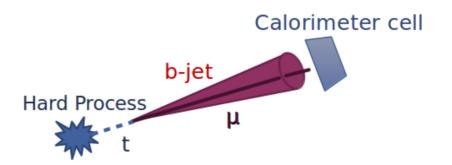
Back-up Slides

Detector design

30 cells in $|\eta|$ <2.5, 5-10 deg per cell

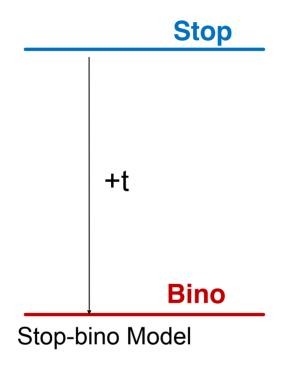

Boosted Object Challenges

[Cohen, D'Agnolo, Hance, Lou, and Wacker, 14]

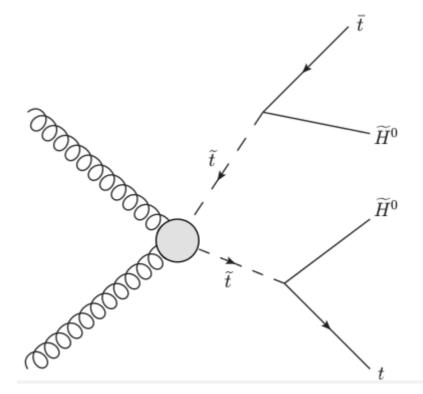

 At high luminosity, the high Standard Model event rate can conceal new physics.

At high energy, SM objects are boosted. Different objects are collimated along the boost direction, to a point they are smaller than a colorimeter cell.

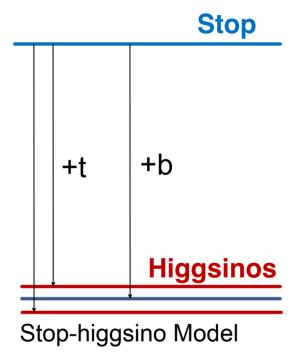
New jet substructure techniques are needed.

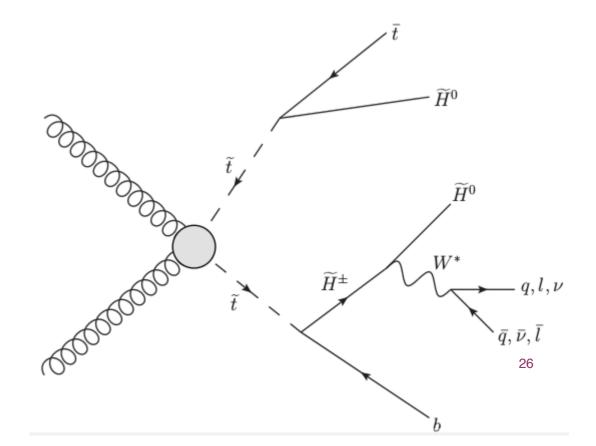


A top quark decaying in the LHC

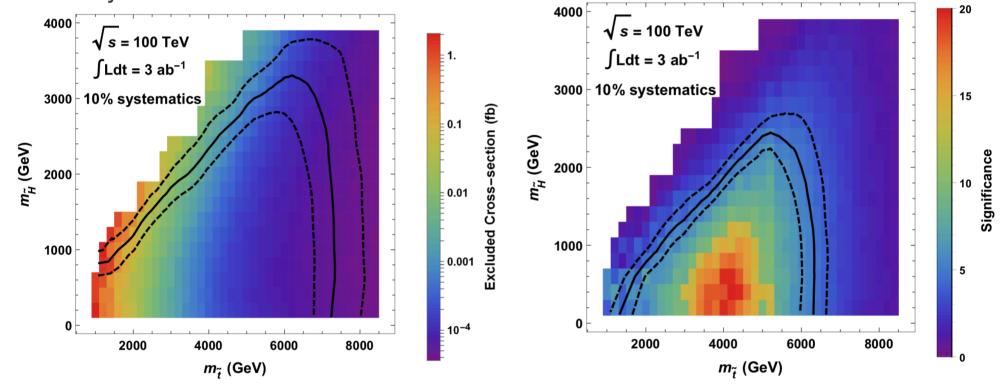


A boosted top in a 100 TeV collider

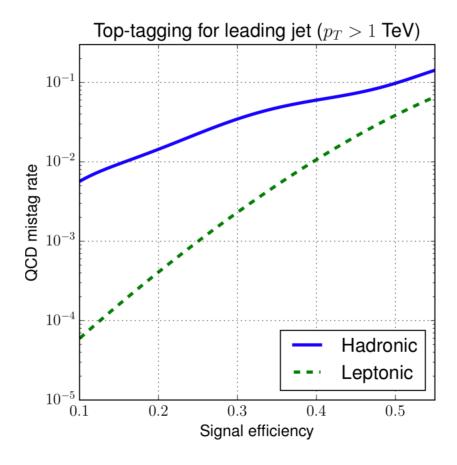

stop-bino model



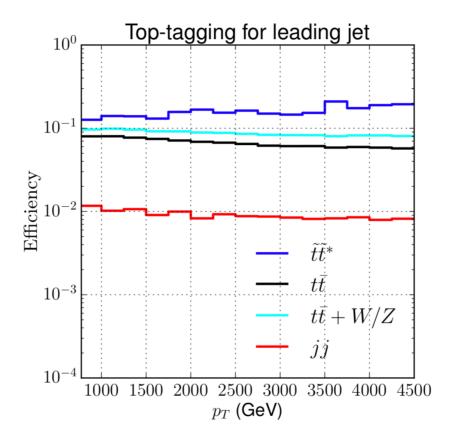
stop-higgsino model


- \sim 50% decay to t + MET
- 50% decay to b + MET

Final states: combinatoric of both


Stop-higgsino Mass Reach

The discovery/exclusion contours for stop-higgsino model with an integrated luminosity $L = 3 \text{ ab}^{-1}$.


The solid lines are 5σ discovery contour (left) and exclusion at 95% C.L.(right). The dashed lines are the $\pm 1\sigma$ boundaries.

Tagging Efficiency

QCD mistag vs signal efficiency

Tagging Efficiency

Signal/background efficiencies top-tagging

Efficiency

Signal/background efficiencies for stop-higgsino cut