

Majorana vs Pseudo-Dirac Neutrinos at Electron-Positron Colliders

Joel Jones-Pérez Pontificia Universidad Católica del Perú (PUCP)

Based on work in collaboration with

P. Hernández, O. Suárez-Navarro (180x.xxxx)

SUSY 2018, Barcelona 24 / 07 / 2018

Neutrino Masses

Type I Seesaw is probably most popular mechanism for neutrino masses

$$\mathcal{L} = \mathcal{L}_{\rm SM} + Y_{\nu} \left(\bar{\nu}_R L \cdot \tilde{H} \right) + \frac{1}{2} M_R \left(\bar{\nu}_R^c \nu_R \right) + \text{h.c.}$$

Neutrino Masses

Type I Seesaw is probably most popular mechanism for neutrino masses

$$\mathcal{L} = \mathcal{L}_{\rm SM} + Y_{\nu} \left(\bar{\nu}_R L \cdot \tilde{H} \right) + \frac{1}{2} M_R \left(\bar{\nu}_R^c \nu_R \right) + \text{h.c.}$$

$$M_{\nu} = \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix}$$
$$m_D = \frac{1}{\sqrt{2}} v Y_{\nu}$$

Neutrino Masses

Type I Seesaw is probably most popular mechanism for neutrino masses

$$\mathcal{L} = \mathcal{L}_{\rm SM} + Y_{\nu} \left(\bar{\nu}_R L \cdot \tilde{H} \right) + \frac{1}{2} M_R \left(\bar{\nu}_R^c \nu_R \right) + \text{h.c.}$$

How can we test this?

We can have GeV-scale heavy neutrinos with large couplings when mass matrix has a particular texture (broken LN symmetry?)

$$M_{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M \\ 0 & M & 0 \end{pmatrix}$$

Light neutrinos: massless Heavy neutrinos: one Dirac LN Conserved

We can have GeV-scale heavy neutrinos with large couplings when mass matrix has a particular texture (broken LN symmetry?)

$$M_{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M \\ 0 & M & 0 \end{pmatrix}$$

Light neutrinos: massless Heavy neutrinos: one Dirac LN Conserved

$$M_{\nu} = \begin{pmatrix} 0 & m_D & \varepsilon m'_D \\ m_D^T & \mu' & M \\ \varepsilon m'_D^T & M & \mu \end{pmatrix}$$

Light neutrinos: massive, Majorana Heavy neutrinos: two Majorana LN Violation: μ , μ ', ϵ

LNV Terms:

- μ , ϵ : Related to light neutrino masses \rightarrow very small
- $\mu' = M_5 M_4$: Related to heavy neutrino mass splitting

Lopez-Pavon, Pascoli, Wong: 1209.5342 [hep-ph]

LNV should vanish if heavy neutrinos are mass-degenerate, or close (Pseudo-Dirac, Quasi-Dirac).

LNV Terms:

- μ , ϵ : Related to light neutrino masses \rightarrow very small
- $\mu' = M_5 M_4$: Related to heavy neutrino mass splitting

Lopez-Pavon, Pascoli, Wong: 1209.5342 [hep-ph]

LNV should vanish if heavy neutrinos are mass-degenerate, or close (Pseudo-Dirac, Quasi-Dirac).

Our objetives:

- Use LNV processes to set limits on heavy neutrino mass splittings.
- Probe the Pseudo-Dirac nature of heavy neutrinos at e⁺ e⁻ colliders.

Majorana vs Pseudo-Dirac Neutrinos at Electron-Positron Colliders

Current Bounds

Neutrinoless Double Beta Decay

Clear signal of LNV. Can be affected by heavy neutrinos, provided they are light enough:

$$A_{\beta\beta} \propto \sum_{\ell_i=1}^{3} m_{\ell i} U_{e\ell_i}^2 \mathcal{M}^{0\nu\beta\beta}(m_{\ell_i}) + \sum_{i=4}^{5} M_i U_{eh_i}^2 \mathcal{M}^{0\nu\beta\beta}(M_i)$$

Joel Jones-Pérez 24 / 07 / 2018

Blennow, Fernandez-Martinez, Lopez-Pavon, Menendez: 1005.3240 [hep-ph]

Neutrinoless Double Beta Decay

Clear signal of LNV. Can be affected by heavy neutrinos, provided they are light enough:

$$A_{\beta\beta} \propto \sum_{\ell_{i}=1}^{3} m_{\ell i} U_{e\ell_{i}}^{2} \mathcal{M}^{0\nu\beta\beta}(m_{\ell_{i}}) + \sum_{i=4}^{5} M_{i} U_{eh_{i}}^{2} \mathcal{M}^{0\nu\beta\beta}(M_{i})$$
Can be written:
$$A_{\beta\beta} \propto m_{\beta\beta} \Delta \mathcal{M}(0, M_{5}) + M_{4} U_{e4}^{2} \Delta \mathcal{M}(M_{4}, M_{5})$$

$$\Delta \mathcal{M}(M_{a}, M_{b}) = \mathcal{M}^{0\nu\beta\beta}(M_{a}) - \mathcal{M}^{0\nu\beta\beta}(M_{b})$$

Joel Jones-Pérez 24 / 07 / 2018

Blennow, Fernandez-Martinez, Lopez-Pavon, Menendez: 1005.3240 [hep-ph]

Loop Corrections to Light Neutrino Masses

Heavy neutrinos can give sizeable corrections to light neutrino masses:

$$\delta m_{\text{loop}} = \frac{g^2}{64\pi^2 m_W^2} (m_D) M_h^{-1} \left(m_{\text{Higgs}}^2 \ln\left[\frac{M_h^2}{m_{\text{Higgs}}^2}\right] + 3m_Z^2 \ln\left[\frac{M_h^2}{m_Z^2}\right] \right) (m_D)^T$$

Grimus, Lavoura: hep-ph/0207229 Aristizabal, Yaguna: 1106.3587 [hep-ph]

Loop Corrections to Light Neutrino Masses

Heavy neutrinos can give sizeable corrections to light neutrino masses:

$$\delta m_{\text{loop}} = \frac{g^2}{64\pi^2 m_W^2} (m_D) M_h^{-1} \left(m_{\text{Higgs}}^2 \ln\left[\frac{M_h^2}{m_{\text{Higgs}}^2}\right] + 3m_Z^2 \ln\left[\frac{M_h^2}{m_Z^2}\right] \right) (m_D)^T$$

Grimus, Lavoura: hep-ph/0207229 Aristizabal, Yaguna: 1106.3587 [hep-ph]

The new contribution is large in the presence of new LNV contributions, ie, μ '. Then:

$$M_5 \to M_4 \Rightarrow \mu' \to 0$$

 $\Rightarrow \delta m_{\text{loop}} \to 0$

Joel Jones-Pérez 24 / 07 / 2018

Lopez-Pavon, Molinaro, Petcov: 1506.05296 [hep-ph]

Majorana vs Pseudo-Dirac Neutrinos at Electron-Positron Colliders

Combined Bounds

Majorana vs Pseudo-Dirac Neutrinos at Electron-Positron Colliders

δM at Lepton Colliders

Direct Production

"Observation" of LNV at lepton colliders can imply that heavy neutrinos are Majorana.

Dirac heavy neutrino

Direct Production

"Observation" of LNV at lepton colliders can imply that heavy neutrinos are Majorana.

Direct Production

Heavy neutrinos are detected by their decay. We focus on:

$$N_{4,5} \to \ell^- j j$$

The charged lepton follows the same η distribution.

Symmetry in ℓ^- => Majorana

We want the asymmetry to appear in the Pseudo-Dirac Limit.

=> Treat heavy neutrinos as virtual particles!

Diagram A (LNC)

Diagram B (LNV)

For Diagram A (LNC) we find:

$$|\mathcal{M}_{A}|^{2} \propto \left(\frac{1}{M_{4}^{2}|f(M_{4})|^{2}} + \frac{2}{M_{4}M_{5}}\Re e\left[\frac{1}{f(M_{4})f^{*}(M_{5})}\right] + \frac{1}{M_{5}^{2}|f(M_{5})|^{2}}\right)$$
$$\frac{\not(H-M_{j})}{q^{2} - M_{j}^{2} + iM_{j}\Gamma_{j}} \equiv \frac{\not(H-M_{j})}{f(M_{j})}$$

For Diagram A (LNC) we find:

$$|\mathcal{M}_{A}|^{2} \propto \left(\frac{1}{M_{4}^{2}|f(M_{4})|^{2}} + \frac{2}{M_{4}M_{5}}\Re e\left[\frac{1}{f(M_{4})f^{*}(M_{5})}\right] + \frac{1}{M_{5}^{2}|f(M_{5})|^{2}}\right)$$
$$\frac{\not(H_{4}+M_{j})}{q^{2}-M_{j}^{2}+iM_{j}\Gamma_{j}} \equiv \frac{\not(H_{4}+M_{j})}{f(M_{j})}$$

On the limit when $M_4 = M_5$, $\Gamma_4 = \Gamma_5$ (*LNC Limit*) we evidently get:

$$|\mathcal{M}_{A}^{\mathrm{LNC}}|^{2} \propto rac{4}{M_{4}^{2}|f(M_{4})|^{2}}$$

For Diagram B (LNV) we find:

$$|\mathcal{M}_B|^2 \propto \left(\frac{1}{q^2 |f(M_4)|^2} - \frac{2}{q^2} \Re e\left[\frac{1}{f(M_4) f^*(M_5)}\right] + \frac{1}{q^2 |f(M_5)|^2}\right)$$
$$\frac{\not (H_1 + M_2)}{q^2 - M_2^2 + iM_2 \Gamma_2} = \frac{\not (H_1 + M_2)}{f(M_2)}$$

For Diagram B (LNV) we find:

$$|\mathcal{M}_B|^2 \propto \left(\frac{1}{q^2 |f(M_4)|^2} - \frac{2}{q^2} \Re e\left[\frac{1}{f(M_4) f^*(M_5)}\right] + \frac{1}{q^2 |f(M_5)|^2}\right)$$
$$\frac{\not(+ M_j)}{q^2 - M_j^2 + iM_j \Gamma_j} \equiv \frac{\not(+ M_j)}{f(M_j)}$$

On the LNC Limit we find:

$$|\mathcal{M}_B^{\rm LNC}|^2 = 0$$

LNV contribution vanishes, so we pass sanity check.

On the limit when $M_5 \rightarrow M_4$ (*PseudoDirac Limit*) we can expand:

$$|\mathcal{M}_B^{\rm PD}|^2 \propto 4 \frac{M_4^2}{q^2 |f(M_4)|^4} \left[\left(1 + \frac{\Gamma_4^2}{4M_4^2} \right) (\delta M)^2 + \frac{1}{4} (\delta \Gamma)^2 + \frac{\Gamma_4}{2M_4} \delta \Gamma \, \delta M \right]$$

On the limit when $M_5 \rightarrow M_4$ (*PseudoDirac Limit*) we can expand:

$$|\mathcal{M}_B^{\rm PD}|^2 \propto 4 \frac{M_4^2}{q^2 |f(M_4)|^4} \left[\left(1 + \frac{\Gamma_4^2}{4M_4^2} \right) (\delta M)^2 + \frac{1}{4} (\delta \Gamma)^2 + \frac{\Gamma_4}{2M_4} \delta \Gamma \, \delta M \right]$$

Comparing both contributions, and taking $q^2 \rightarrow M_4^2$ (on-shell):

$$\left(\frac{|\mathcal{M}_B^{PD}|^2}{|\mathcal{M}_A^{LNC}|^2}\right)_{q^2=M_4^2} \sim \left(1 + \frac{\Gamma_4^2}{4M_4^2}\right) \left(\frac{\delta M}{\Gamma_4}\right)^2 + \frac{1}{4} \left(\frac{\delta\Gamma}{\Gamma_4}\right)^2 + \frac{\Gamma_4}{2M_4} \frac{\delta\Gamma\delta M}{\Gamma_4^2}$$

On the limit when $M_5 \rightarrow M_4$ (*PseudoDirac Limit*) we can expand:

$$|\mathcal{M}_B^{\rm PD}|^2 \propto 4 \frac{M_4^2}{q^2 |f(M_4)|^4} \left[\left(1 + \frac{\Gamma_4^2}{4M_4^2} \right) (\delta M)^2 + \frac{1}{4} (\delta \Gamma)^2 + \frac{\Gamma_4}{2M_4} \delta \Gamma \, \delta M \right]$$

Comparing both contributions, and taking $q^2 \rightarrow M_4^2$ (on-shell):

$$\left(\frac{|\mathcal{M}_B^{PD}|^2}{|\mathcal{M}_A^{LNC}|^2}\right)_{q^2=M_4^2} \sim \left(1 + \frac{\Gamma_4^2}{4M_4^2}\right) \left(\left(\frac{\delta M}{\Gamma_4}\right)^2\right) + \frac{1}{4} \left(\frac{\delta\Gamma}{\Gamma_4}\right)^2 + \frac{\Gamma_4}{2M_4} \frac{\delta\Gamma\delta M}{\Gamma_4^2}$$

LNV effects shall be relevant when $\delta M / \Gamma$ is large.

Avoiding Backgrounds

The final state can have complicated backgrounds from $e^+e^- \rightarrow W^+ W^-$. To avoid them, we require the heavy neutrino to lead to a displaced vertex.

Avoiding Backgrounds

The final state can have complicated backgrounds from $e^+e^- \rightarrow W^+ W^-$. To avoid them, we require the heavy neutrino to lead to a displaced vertex.

Parameter region where this is feasible at the ILC is restricted:

10
$$\mu m < L_{xy} < 2.49 m$$

 $L_z < 3 \text{ m}$

Charged lepton impact parameter:

$$d_{\ell} \equiv \frac{L_x \, p_y^{\ell} - L_y \, p_x^{\ell}}{p_T^{\ell}} > 6 \ \mu \mathrm{m}$$

Antusch, Cazzato, Fischer: 1604.02420 [hep-ph]

ℓ^- pseudorapidity distribution (benchmark 1)

ℓ^- pseudorapidity distribution (benchmark 2)

Mass (GeV)	$ U_{\mu 4} ^2$	$\Gamma_4 \ (meV)$	$c \tau_4 (\mathrm{mm})$
20	5×10^{-6}	20	0.01

Bounding the Mass Difference (2σ)

Conclusions:

- We can probe the (Majorana) PseudoDirac nature of neutrinos by (not) observing an asymmetry in the η distribution of displaced leptons, at the ILC.
- The observation of the asymmetry depends on the ratio between δM and $\Gamma.$
- For both studied benchmarks, the δM "thresholds" are:

 $\delta M \sim 1 \ {
m meV}$ Benchmark 1 $\delta M \sim 20 \ {
m meV}$ Benchmark 2

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

Thanks!

Backup

Casas-Ibarra:

• By using the Casas-Ibarra parametrisation, one can write the Dirac masses as:

$$(m_D^{\text{new}})_{a4} \simeq \pm (Z_a^{\text{NH}})^* \sqrt{m_3 M_4} \cosh \gamma_{45} e^{\mp i\theta_{45}}$$

 $(m_D^{\text{new}})_{a5} \simeq -i (Z_a^{\text{NH}})^* \sqrt{m_3 M_5} \cosh \gamma_{45} e^{\mp i\theta_{45}}$

• The mass matrix is:

$$M'_{\nu} = \begin{pmatrix} 0 & (m_D^{\text{new}})_{a4} & (m_D^{\text{new}})_{a5} \\ (m_D^{\text{new}})_{a4}^T & M_4 & 0 \\ (m_D^{\text{new}})_{a5}^T & 0 & M_5 \end{pmatrix}$$

Majorana vs Pseudo-Dirac Neutrinos at Electron-Positron Colliders

Casas-Ibarra:

• With a change of basis:

$$V^{T}M_{\nu}'V = M_{\nu} \qquad V = \begin{pmatrix} I & 0 & 0\\ 0 & -i\cos\theta & i\sin\theta\\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$
$$M_{\nu} = \begin{pmatrix} 0 & m_{D} & \varepsilon m_{D}'\\ \frac{m_{D}}{m_{D}} & \mu' & M\\ \varepsilon m_{D}'^{T} & M & \mu \end{pmatrix} \qquad \tan\theta = \sqrt{M_{5}/M_{4}}$$

$$\Rightarrow \mu' = M_5 - M_4$$

Casas-Ibarra:

• The elements of the mixing matrix:

$$U_{a4} \simeq \pm Z_a^{\rm NH} \sqrt{\frac{m_3}{M_4}} \cosh \gamma_{45} e^{\mp i\theta_{45}}$$
$$U_{a5} \simeq i Z_a^{\rm NH} \sqrt{\frac{m_3}{M_5}} \cosh \gamma_{45} e^{\mp i\theta_{45}}$$

$$Z_a^{\rm NH} \equiv (U_{\rm PMNS})_{a3} \pm i \sqrt{\frac{m_2}{m_3}} (U_{\rm PMNS})_{a2}$$

Majorana vs Pseudo-Dirac Neutrinos at Electron-Positron Colliders

Diagrams A and B:

• The matrix elements squared are:

$$|\mathcal{M}_{A}|^{2} = \frac{1}{4} \left(\frac{g}{\sqrt{2}}\right)^{6} \left[\sum_{j,k=4}^{5} \Omega_{Aj} \Omega_{Ak}^{*}\right] G_{A}^{\lambda\delta} \epsilon_{\lambda}^{*}(p_{4}) \epsilon_{\delta}(p_{4})$$
$$\mathcal{M}_{B}|^{2} = \frac{1}{4} \left(\frac{g}{\sqrt{2}}\right)^{6} \left[\sum_{j,k=4}^{5} \frac{M_{j}M_{k}}{q^{2}} \Omega_{Bj} \Omega_{Bk}^{*}\right] G_{B}^{\lambda\delta} \epsilon_{\lambda}^{*}(p_{4}) \epsilon_{\delta}(p_{4})$$
$$\Omega_{Aj} \equiv \frac{U_{\mu j}^{*} U_{ej} U_{e\nu}^{*}}{f(M_{j})} \qquad \Omega_{Bj} \equiv \frac{U_{\mu j}^{*} U_{ej}^{*} U_{e\nu}}{f(M_{j})}$$

Software

- SARAH 4.12.3: Model implementation
- SPheno 3.3.8: Calculation of masses, mixing and branching ratios
- WHIZARD 2.5.0: Event generation at ILC
- Pythia 6: Parton shower and hadronization (from WHIZARD)
- Delphes 3.4.1: Fast detector simulation
- DSiD Card: Delphes card for SiD detector.