

Probing ~100 GeV wino-like dark matter at the LHC

Shoaib Munir * KIAS, Seoul

SUSY2018, Barcelona July 26, 2018

*with Waleed Abdallah, Shaaban Khalil and Stefano Moretti, ArXiv: 1710.05536

- Wino(-like) DM in the MSSM
- The standard trilepton probe at the LHC
- A complimentary signal topology
- Signal-to-background analysis
- Conclusions

DARK MATTER IN THE MSSM

KOREA INSTITUTE FOR ADVANCED

KI

THE TRILEPTON (+ MET) CHANNEL

DM search channel with generally the highest yield employed by both CMS and ATLAS, assuming the production process

 $\tilde{\chi}_2^{\pm}$

 $S_1^i : pp \to \widetilde{\chi}_i^0 \, \widetilde{\chi}_1^{\pm} \to \widetilde{\chi}_1^0 \, Z^{(*)} \, \widetilde{\chi}_1^0 \, W^{\pm(*)} \to \widetilde{\chi}_1^0 \, \ell^+ \ell^- \, \widetilde{\chi}_1^0 \, \ell^\pm \, \nu_l \,, \text{ with } i = 2, 3, 4$

But three leptons (+ MET) can also result from a different event topology - more so for Wino DM

 $S_2 : pp \to \widetilde{\chi}^0_1 \, \widetilde{\chi}^\pm_2 \to \widetilde{\chi}^0_1 \, \widetilde{\chi}^\pm_1 \, Z^{(*)} \to \widetilde{\chi}^0_1 \, \widetilde{\chi}^0_1 \, W^{\pm(*)} \, \ell^+ \ell^- \to \widetilde{\chi}^0_1 \, \widetilde{\chi}^0_1 \, \ell^\pm \, \nu_l \, \ell^+ \ell^-$

THE WINO LSP

For a preliminary comparative estimate, define effective cross sections

$$\begin{split} S_{1}^{i,\text{eff}} &: g_{W\widetilde{\chi}_{i}^{0}\widetilde{\chi}_{1}^{\pm}}^{2} \times \text{BR}(\widetilde{\chi}_{i}^{0} \to \widetilde{\chi}_{1}^{0} \mu^{+} \mu^{-}) \times \text{BR}(\widetilde{\chi}_{1}^{\pm} \to \widetilde{\chi}_{1}^{0} \mu^{\pm} \nu_{\mu}); \quad i = 2, 3, 4 \\ S_{1}^{\text{eff}} &= \sum_{i=2}^{4} S_{1}^{i,\text{eff}} \\ S_{2}^{\text{eff}} &: g_{W\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{2}^{\pm}}^{2} \times \text{BR}(\widetilde{\chi}_{2}^{\pm} \to \widetilde{\chi}_{1}^{\pm} \mu^{+} \mu^{-}) \times \text{BR}(\widetilde{\chi}_{1}^{\pm} \to \widetilde{\chi}_{1}^{0} \mu^{\pm} \nu_{\mu}) \\ 3\text{R}(\widetilde{\chi}_{i}^{0} \to \widetilde{\chi}_{1}^{0} \mu^{+} \mu^{-}) &= \begin{cases} \text{BR}(\widetilde{\chi}_{2}^{0} \to \widetilde{\chi}_{1}^{0} \mu^{+} \mu^{-}), & \Delta m_{\widetilde{\chi}_{i}^{0}} < m_{Z} \\ \text{BR}(\widetilde{\chi}_{i}^{0} \to \widetilde{\chi}_{1}^{0} Z) \times \text{BR}(Z \to \mu^{+} \mu^{-}), & m_{Z} < \Delta m_{\widetilde{\chi}_{i}^{0}} < m_{h} \\ \sum_{X=Z,h} \text{BR}(\widetilde{\chi}_{i}^{0} \to \widetilde{\chi}_{1}^{0} X) \times \text{BR}(X \to \mu^{+} \mu^{-}), & m_{h} < \Delta m_{\widetilde{\chi}_{i}^{0}} \end{cases} \end{split}$$

Define also: $Z_B \equiv |N_{11}|^2$, $Z_W \equiv |N_{12}|^2$, $Z_H \equiv |N_{13}|^2 + |N_{14}|^2$ $Z_W > \max(Z_B, Z_H)$

Caveat: Wino LSP always under-abundant for sub-TeV masses; assume either its non-thermal production for consistency with PLANCK or a multicomponent DM

CROSS SECTION ESTIMATES

KI

KOREA INSTITUTE FOR ADVANCED

λaff

EVENT ANALYSIS

SPheno for mass spectra

MadGraph5 for cross sections

Event generation with Pythia 6.4

 \odot Detector simulation with DELPHES 3 $\sqrt{s} = 14\,{
m TeV}\,\,{\cal L} = 300\,{
m fb}^{-1}$

Cuts		Backgrounds			Signals		Significances		
		$W^{\pm}Z$	W^+W^-	ZZ	S_1	S_2	\mathcal{Z}_1	\mathcal{Z}_2	$\mathcal{Z}_{3\ell}$
Events before cuts		778670	4444650	73213	5084	5616	2.21	2.44	4.65
$ \eta(\ell) < 2.4$		701373	3538624	59515	4537	5046	2.19	2.43	4.62
$n(\ell) \ge 1$ with $p_T > 20 \mathrm{GeV}$		674906	3295789	56633	4366	4902	2.18	2.44	4.62
$\Delta R(\ell, j) > 0.4$		428099	1616502	27309	2543	2887	1.77	2.01	3.78
$p_T(j) > 30 \mathrm{GeV}$		343438	1280660	21741	2154	2457	1.68	1.92	3.60
$ \eta(j) < 2.5$		270703	1017195	18403	1943	2222	1.70	1.94	3.64
<i>b</i> -jet veto		267997	984850	17870	1859	2127	1.65	1.89	3.54
M_T	$> 160 \mathrm{GeV}$	516	16	2	1	1	0.04	0.04	0.08
	$120-160\mathrm{GeV}$	750	54	2	1	1	0.04	0.04	0.08
	$0-120\mathrm{GeV}$	35705	1827	34	9	7	0.05	0.04	0.09
$\not\!$		21026	60391	3411	666	917	2.29	3.15	5.44
$75{ m GeV} < M_{\ell^+\ell^-} < 105{ m GeV}$		7452	2793	1511	319	459	2.94	4.23	7.17

EVENT ANALYSIS

BP (scenario)	$m_{ ilde{\chi}_1^0} \ [{ m GeV}]$	$m_{ ilde{\chi}^0_2}$ [GeV]	$m_{ ilde{\chi}_3^0}$ [GeV]	$m_{ ilde{\chi}_4^0}$ [GeV]	$\begin{array}{c} m_{\tilde{\chi}_1^{\pm}} \\ [\text{GeV}] \end{array}$	$\begin{array}{c} m_{\tilde{\chi}_2^{\pm}} \\ [\text{GeV}] \end{array}$	σ_{S_1} [fb]	σ_{S_2} [fb]
1 (WSH)	115	214	234	891	117	243	17	18.7
2 (WLH)	119	183	216	844	123	223	63.7	9.66

S

KOREA INSTITUTE FOR ADVANCED STUDY

KI

$M_T = \sqrt{2 \not\!\!\! E_T p_{T(\ell_3)} (1 - \cos \Delta \phi_{\ell_3, \not\!\!\! E_T})} \qquad \sqrt{s} = 14 \text{TeV} \ \mathcal{L} = 300 \text{fb}$							$300\mathrm{fb}$		
Cuts		Backgrounds			Signals		Significances		
		$W^{\pm}Z$	W^+W^-	ZZ	S_1	S_2	\mathcal{Z}_1	\mathcal{Z}_2	$\mathcal{Z}_{3\ell}$
Events before cuts		778670	4444650	73213	5084	5616	2.21	2.44	4.65
$ \eta(\ell) < 2.4$		701373	3538624	59515	4537	5046	2.19	2.43	4.62
$n(\ell) \ge 1$ with $p_T > 20 \mathrm{GeV}$		674906	3295789	56633	4366	4902	2.18	2.44	4.62
$\Delta R(\ell, j) > 0.4$		428099	1616502	27309	2543	2887	1.77	2.01	3.78
$p_T(j) > 30 \mathrm{GeV}$		343438	1280660	21741	2154	2457	1.68	1.92	3.60
$ \eta(j) < 2.5$		270703	1017195	18403	1943	2222	1.70	1.94	3.64
<i>b</i> -jet veto		267997	984850	17870	1859	2127	1.65	1.89	3.54
	$> 160 \mathrm{CeV}$	516	16	2	1	1	0.04	0.04	0.08
M_T	$120-160\mathrm{GeV}$	750		-2	1	1	0.04	0.04	0.08
	0 120 Gev	35705	1827	34	9	1	0.05	0.04	0.09
$E_T > 100 \mathrm{GeV}$		21026	60391	3411	666	917	2.29	3.15	5.44
$75{ m GeV} < M_{\ell^+\ell^-} < 105{ m GeV}$		7452	2793	1511	319	459	2.94	4.23	7.17

CONCLUSIONS

- The trilepton final state could serve as an important probe of the Wino LSSP, thanks to contribution from a non-standard event topology
- A ~100 GeV Wino might be accessible at the 14 TeV LHC even with 300/fb luminosity - through optimisation of the current kinematical cuts

Observation of such a DM may hint at

•
$$\mu < 0$$

- $|\mu|$ consistent with naturalness
- inverted electroweakino soft mass hierarchy (inconsistent with mSUGRA)
- Anomaly-mediated SUSY-breaking

THANK YOU! 감사합니다!