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Physical Higgs states: 

Scalars h and H,  

pseudoscalar A, a H± pair   
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THE MINIMAL SUPERSYMMETRIC SM

The MSSM Superpotential, from which the scalar potential is derived, is given as

WMSSM = hu Q̂ · Ĥu Û c
R + hd Ĥd · Q̂ D̂c

R + he Ĥd · L̂ Êc
R + µĤu · Ĥd , (4)

where Q̂, Û c
R, D̂R, L̂ and ÊR are the quark and lepton superfields and hu, hd and he are the

corresponding Yukawa couplings. In this model, the mass of H± is given at LO as

m2
H± = m2

A +m2
W , (5)

where mW is the mass of the W boson. In order to allow the H± → W±Hobs decay, one requires
mH± > mHobs

+mW , which translates into the requirement mA ! 190GeV. In the MSSM, under
such a condition, the tree-level mass of the SM-like Higgs boson, HSM, has an upper limit

m2
HSM

≤ m2
Z cos2 2β , (6)

where mZ is the mass of the Z boson. Therefore, if the HSM is identified with the Hobs and hence
required to have a mass close to 125GeV in accordance with the LHC measurement, a large value of
tan β is necessary. Furthermore, the absence of any significant deviations of the signal strengths of
the Hobs from the SM expectations so far [44] seems to be pushing the MSSM towards the so-called
‘decoupling regime’. This regime corresponds to mA ! 150GeV for tan β ! 10 and yields SM-like
couplings of the HSM, in addition to a maximal tree-level mass, as noted above. The net effect of all
these observations is that a H± with mass greater than 200GeV and a HSM with the correct mass
and SM-like couplings can be obtained simultaneously only for large tan β. However, according to
Eqs. (2) and (3), tan β ∼ 10 not only diminishes the BR(H± → W±HSM) but also the gb → tH−

cross section.
The complete MSSM contains more than 120 free parameters in addition to those of the SM.

In its phenomenological version, the pMSSM, one assumes the matrices for the sfermion masses
and for the trilinear scalar couplings to be diagonal, which reduces the parameter space of the
model considerably. Here, since we are mainly concerned with the Higgs sector of the model, we
further impose the following mSUGRA-inspired (where mSUGRA stands for minimal supergravity)
universality conditions:

m0 ≡ MQ1,2,3 = MU1,2,3 = MD1,2,3 = ML1,2,3 = ME1,2,3 ,

m1/2 ≡ 2M1 = M2 =
1

3
M3 ,

A0 ≡ At = Ab = Aτ , (7)

where MQ1,2,3 , MU1,2,3 , MD1,2,3 , ML1,2,3 and ME1,2,3 are the soft masses of the sfermions, M1,2,3

those of the gauginos and At,b,τ the soft trilinear couplings. This leaves us with a total of six free
parameters, namely m0, m1/2, A0, mA, tan β and the Higgs-higgsino mass parameter µ.

• NMSSM

The NMSSM [45, 46, 47] (see, e.g., [48, 49] for reviews) contains a singlet Higgs field in addition to
the two doublet fields of the MSSM. The scale-invariant Superpotential of the NMSSM is written
as

WNMSSM = MSSM Yukawa terms + λŜĤu · Ĥd +
κ

3
Ŝ3 , (8)

where Ŝ is the additional Higgs singlet Superfield and λ and κ are dimensionless Yukawa couplings.
The introduction of the new singlet field results in a total of five neutral Higgs mass eigenstates
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Defined by the superpotential

with two complex Higgs doublet fields 

Tree-level masses of the neutral scalars:

In this case, since Det(M2
I) = 0, one eigenvalue is zero and corresponds to the Goldstone

boson mass, while the other corresponds to the pseudoscalar Higgs mass and is given by

M2
A = −m̄2

3(tan β + cotβ) = −
2m̄2

3

sin 2β
(1.77)

The mixing angle θ which gives the physical fields is in fact simply the angle β
(

G0

A

)

=

(
cosβ sin β

− sin β cos β

) (
P 0

1

P 0
2

)

(1.78)

In the case of the charged Higgs boson, one can make exactly the same exercise as for the

pseudoscalar A boson and obtain the charged fields
(

G±

H±

)

=

(
cosβ sin β

− sin β cosβ

) (
H±

1

H±
2

)

(1.79)

with a massless charged Goldstone and a charged Higgs boson with a mass

M2
H± = M2

A + M2
W (1.80)

Coming back to the CP–even Higgs case, and injecting the expression of M2
A into M2

R, one

obtains for the CP–even Higgs boson masses after calculating the trace and the determinant

of the matrix and solving the resulting quadratic equation

M2
h,H =

1

2

[
M2

A + M2
Z ∓

√
(M2

A + M2
Z)2 − 4M2

AM2
Z cos2 2β

]
(1.81)

The physical CP–even Higgs bosons are obtained from the rotation of angle α
(

H

h

)

=

(
cosα sinα

− sinα cosα

) (
H0

1

H0
2

)

(1.82)

where the mixing angle α is given by

cos 2α = − cos 2β
M2

A − M2
Z

M2
H − M2

h

, sin 2α = − sin 2β
M2

H + M2
h

M2
H − M2

h

(1.83)

or, in a more compact way

α =
1

2
arctan

(
tan2β

M2
A + M2

Z

M2
A − M2

Z

)
, −

π

2
≤ α ≤ 0 (1.84)

Thus, the supersymmetric structure of the theory has imposed very strong constraints on

the Higgs spectrum. Out of the six parameters which describe the MSSM Higgs sector,

Mh, MH , MA, MH±, β and α, only two parameters, which can be taken as tan β and MA, are

free parameters at the tree–level. In addition, a strong hierarchy is imposed on the mass

spectrum and besides the relations MH > max(MA, MZ) and MH± > MW , we have the very

important constraint on the lightest h boson mass at the tree–level

Mh ≤ min(MA, MZ) · | cos 2β| ≤ MZ (1.85)
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The fourth term on the right hand side of Eq. (1) replaces the Higgs-higgsino mass term, µĤuĤd,
present in the MSSM superpotential. The Higgs singlet superfield acquires a non-zero vacuum
expectation value (VEV), vs, after EWSB. This vs is naturally of the order of the SUSY-breaking

scale MSUSY (herein operationally defined as M
2
SUSY =

m
2
t̃1
+m

2
t̃2

2 , where m
t̃1

and m
t̃2

are the physical
masses of the two stops), thus solving the µ-problem of the MSSM by generating an e↵ective µ-term,

µe↵ ⌘ �

D
Ŝ

E
= �vs . (2)

The absence of a µĤuĤd term, however, results in a U(1)PQ symmetry, which is explicitly broken
here by the last term in Eq. (1), thus introducing instead a discrete Z3 symmetry and making the
NMSSM superpotential scale-invariant as well.

The Higgs potential, derived from the above superpotential, is given as

V0 = |�
�
H

+
u H

�
d
� H

0
uH

0
d

�
+ S

2
|
2
+
⇣
m

2
Hu

+ |µ + �S|
2
⌘⇣

|H
0
u|

2
+ |H

+
u |

2
⌘

+
⇣
m

2
Hd

+ |µ + �S|
2
⌘⇣

|H
0
d
|
2
+ |H

�
d
|
2
⌘

+
g
2

4

⇣
|H

0
u|

2
+ |H

+
u |

2
� |H

0
d
|
2
� |H

�
d
|
2
⌘2

+
g
2
2

2
|H

+
u H

0⇤
d

+ H
0
uH

�⇤
d

|
2
+ m

2
S |S|

2 +


�A�

�
H

+
u H

�
d
� H

0
uH

0
d

�
S +

1

3
AS

3 + h.c.

�
, (3)

where g1 and g2 are the U(1)Y and SU(2)L gauge coupling constants, respectively, and g
2 =

g
2
1+g

2
2

2 .
Here, A� and A are soft SUSY-breaking Higgs trilinear couplings, while mHd

, mHu
and mS denote

the soft Higgs masses. The fields Hd, Hu and S are expanded about their respective VEVs, vd, vu

and vs, as

H
0
d

=

 
1p
2
(vd + HdR + iHdI)

H
�
d

!
, H

0
u = e

i�u

 
H

+
d

1p
2
(vu + HuR + iHuI)

!
, S

0 =
e
i�s

p
2

(vs+SR+iSI).

(4)
For correct EWSB, the V0, rewritten in terms of these expanded fields, should have a minimum at
non-vanishing vd, vu and vs, implying

⌧
�V0

�✓

�
= 0 for ✓ = HdR, HuR, SR, HdI , HuI , SI , (5)

which leads to six ‘tadpole conditions’ (see, e.g., [17]).
Taking the second derivative of V0 at the vacuum yields the tree-level 6⇥ 6 neutral Higgs mass

matrix-squared, M2
0, in the basis HT = (HdR, HuR, SR, HdI , HuI , SI). It can be expressed in the

general form

M
2
0 =

0

BB@

M
2
S

M
2
SP

�
M

2
SP

�
T

M
2
P

1

CCA , (6)

where the 3⇥3 block M
2
S

corresponds to the CP-even interaction states (HdR, HuR, SR), the 3⇥3
block M

2
P

to the CP-odd states (HdI , HuI , SI), while M
2
SP

is responsible for mixing between the
CP-even and -odd states.

In the rNMSSM, where all the Higgs sector trilinear coupling parameters are real, M
2
SP

is
a null matrix. One can therefore simply rotate only the submatrix M

2
P

to isolate the massless
Nambu-Goldstone boson field, G, which can then be dropped to yield a 5 ⇥ 5 mass matrix M

02
0 .
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�M2
h / ln

M2
SUSY

M2
t

+
X2

t

M2
SUSY

✓
1� X2

t

12M2
SUSY

◆
(1)

M2
h,hs

⇡ 1

2

�
M2

Z + 4(vs)
2 + vsA

⌥
q

[M2
Z � 4(vs)2 � vsA]

2
+ 4�2v2 [2�vs � (A� + vs) sin 2�]

2
�

M2
h  M2

Z cos2 2� +
�2v2 sin2 2�

2
� �2v2

22


�� sin 2�

✓
+

A�p
2vs

◆�2
(2)

M2
as

' �(A� + 4vs)
v2 sin 2�

2vs
� 3vsA �

M4
P,12

M2
P,11

(3)

v ⌘
q
v2u + v2d ' 174 (4)

tan� � 1 (5)

M2
h  min(M2

Z , M
2
A) · cos2 2� (6)

1

H
0
d
=

✓ 1p
2
(vd +HdR + iHdI)

H
�
d

◆
, H

0
u
= e

i�u

✓
H

+
u

1p
2
(vu +HuR + iHuI)

◆
, S

0 =
e
i�s

p
2
(vs+SR+iSI).

(9)
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LIGHTEST HIGGS BOSON MASS

Figure 1: The maximal value of the h boson mass as a function of Xt/MS in the pMSSM when
all other soft SUSY–breaking parameters and tan� are scanned in the range Eq. (4) (left) and the
contours for 123< Mh <127 GeV in the [MS , Xt] plane for some selected range of tan� values (right).

the theoretical uncertainties in the determination of Mh are included. Hence, only the scenar-
ios with large Xt/MS values and, in particular, those close to the maximal mixing scenario
At/MS ⇡

p
6 survive. The no–mixing scenario is ruled out for MS

<
⇠ 3 TeV, while the typical

mixing scenario needs large MS and moderate to large tan � values. We obtain M
max
h

=136,
123 and 126 GeV in, the maximal, zero and typical mixing scenarios, respectively3.

The right–hand side of Fig. 1 shows the contours in the [MS, Xt] plane where we obtain the
mass range 123 GeV < Mh < 127 GeV from our pMSSM scan with Xt/MS

<
⇠ 3; the regions in

which tan � <
⇠ 3, 5 and 60 are highlighted. One sees again that a large part of the parameter

space is excluded if the Higgs mass constraint is imposed4.

3. Implications for constrained MSSM scenarios

In constrained MSSM scenarios (cMSSM)5, the various soft SUSY–breaking parameters obey
a number of universal boundary conditions at a high energy scale such as the GUT scale, thus
reducing the number of basic input parameters to a handful. These inputs are evolved via the
MSSM renormalisation group equations down to the low energy scale MS where the conditions
of proper electroweak symmetry breaking (EWSB) are imposed. The Higgs and superparticle

3We have checked that the program FeynHiggs [18] gives comparable values for Mh within ⇡ 2 GeV which
we consider to be our uncertainty as in Eq. (5).

4Note that the M
max
h values given above are obtained with a heavy superparticle spectrum, for which the

constraints from flavour physics and sparticle searches are evaded, and in the decoupling limit in which the h

production cross sections and the decay branching ratios are those of the SM Higgs boson. However, we also
searched for points in the parameter space in which the boson with mass ' 125 GeV is the heavier CP–even
H

0 boson which corresponds to values of MA of order 100 GeV. Among the ⇡ 106 valid MSSM points of the
scan, only ⇡ 1.5 ⇥ 10�4 correspond to this scenario. However, if we impose that the H

0 cross sections times
branching ratios are compatible with the SM values within a factor of 2 and include the constraints from MSSM
Higgs searches in the ⌧

+
⌧
� channel, only ⇡ 4 ⇥ 10�5 of the points survive. These are all excluded once the

b ! s� and Bs ! µ
+
µ
� constraints are imposed. A detailed study of the pMSSM Higgs sector including the

dark matter and flavour constraints as well as LHC Higgs and SUSY search limits is presented in Ref. [19].
5In this paper cMSSM denotes all constrained MSSM scenarios, including GMSB and AMSB.
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Figure 8: (a) Scatter plot showing the value of mh in the (m0, m1/2) plane of the CMSSM. (b) Marginalized
posterior pdf in the parameters Xt vs MSUSY, relevant for the loop corrections to the Higgs mass.

masses, as it will appear clear below. On the other hand, taking into account the minimalization condition for the
scalar potential, large negative A0 do not allow the parameter µ to be small enough to enhance the Higgsino-like
component of the neutralino. That creates the tension between the relic density and the Higgs mass above 124 GeV.

In Fig. 8(a) we show a scatter plot representing the distribution of the lightest Higgs mass over the (m0, m1/2)
plane. One can see that Higgs masses compatible with 125 GeV at 1� can be obtained in large numbers across the
whole plane. Particularly, the mass distribution presented in Fig. 8(a) has one interesting aspect. The one-loop
contribution to the Higgs mass in the decoupling limit (mA � mZ) for moderate-to-large tan � is given by [57]

�m2
h / ln

M2
SUSY

m2
t

+
X2

t

M2
SUSY

✓
1 � X2

t

12M2
SUSY

◆
, (17)

where mt is the top quark mass, MSUSY is the geometrical average of the physical stop masses, and Xt = At �µ cot �.
While the presence of a relatively heavy Higgs is not a surprise in the A-funnel region, where the one-loop contribution
to mh is driven up by a large SUSY scale, it is more striking in the ⌧̃ -coannihilation region. As anticipated above, to
ensure such a heavy Higgs mass in the region of low m0 and m1/2, the contribution from the Xt factor in Eq. (17)
should be significant. (Xt ⇠ At almost throughout the whole parameter space.) In fact, it turns out that the
⌧̃ -coannihilation region is the only region of parameter space where the factor |Xt|/MSUSY reaches values close to
⇠ 2.5, the maximal contribution from the stop-mixing.

The interplay between MSUSY and Xt just described is often claimed in the literature to be an indication of fine-
tuning [58], thus making the CMSSM a less natural model than, for instance, the Next-to-Minimal Supersymmetric
Standard Model [17]. We plot in Fig. 8(b) the two-dimensional marginalized posterior in the (MSUSY, Xt) plane. One
can see two separate high-probability regions. The one on the right corresponds to the A-funnel region, where the
best-fit point lies, while the one on the left, smaller in size, to the ⌧̃ -coannihilation region. We gather that, even if
the model might be intrinsically fine-tuned, given the present status of experimental and theoretical uncertainties,
our global set of constraints favors 2� credible regions that span an area of ⇠ 10 TeV2, thus allowing a broad range
of values for these parameters. Moreover, it appears clear that the present set of constraints highly favors negative
values of Xt.

B. Impact of (g � 2)µ and the case µ < 0

Since the poor global fit is mainly a result of including the (g � 2)µ constraint in the likelihood, and the SM
prediction is to this day still marred by substantial theoretical uncertainties, we have also performed scans without
the (g � 2)µ constraint. In this case there is no reason anymore to assume sgn µ = +1, as the main reason for such

The mass of h receives higher order corrections, 
mainly from the (s)top sector 

�M2
h / ln

M2
SUSY

M2
t

+
X2

t

M2
SUSY

✓
1� X2

t

12M2
SUSY

◆
(1)

M2
h,hs
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⇢
M2

Z + 4(vs)
2 + vsA ⌥
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Z � 4(vs)2 � vsA]
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+ 4�2v2 [2�vs � (A� + vs) sin 2�]

2
�

(2)

M2
h  M2

Z cos2 2� +
�2v2 sin2 2�

2
� �2v2

22


�� sin 2�

✓
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A�p
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◆�2
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' �(A� + 4vs)
v2 sin 2�
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(4)

where v ⌘
p

v2u + v2d ' 174 tan� � 1

1

`Hobs’ observed at the LHC:

 [CMS & ATLAS Colls., 1606.02266]



To identify h with Hobs 
• Enhance SUSY corrections  

• Maximise tree-level mass
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where the abbreviations ℓS = log(M2
S/m2

t ), µ̄ = µ/MS, at,b = At,b/MS and xt = Xt/MS have

been used. The factors cij take into account the leading two–loop corrections due to the top

and bottom Yukawa couplings and to the strong coupling constant g3; they read

cij =
1

32π2
(tijλ

2
t + bijλ

2
b − 32g2

3) (1.128)

with the various coefficients given by

(t11, t12, t21, t22, t31, t32) = (12,−4, 6,−10, 9, 7)

(b11, b12, b21, b22, b31, b32) = (−4, 12, 2, 6, 18,−1, 15) (1.129)

The expressions eq. (1.127) provide a good approximation of the bulk of the radiative cor-

rections. However, one needs to include the full set of corrections mentioned previously to

have precise predictions for the Higgs boson masses and couplings to which we turn now.

1.3.2 The radiatively corrected Higgs masses

The radiately corrected CP–even Higgs boson masses are obtained by diagonalizing the mass

matrix eq. (1.125). In the approximation where only the leading correction controlled by the

top Yukawa coupling, eq. (1.126), are implemented, the masses are simply given by [37]

M2
h,H =

1

2
(M2

A + M2
Z + ϵ)

[

1 ∓

√

1 − 4
M2

ZM2
A cos2 2β + ϵ(M2

A sin2 β + M2
Z cos2 β)

(M2
A + M2

Z + ϵ)2

]

(1.130)

In this approximation, the charged Higgs mass does not receive radiative corrections, the

leading contributions being of O(αm2
t ) in this case [69,110,133]. A very simple expression for

the corrected charged Higgs boson mass, which gives a result that is rather accurate is [134]

MH± =
√

M2
A + M2

W − ϵ+ with ϵ+ =
3GµM2

W

4
√

2π2

[ m2
t

sin2 β
+

m2
b

cos2 β

]
log
(M2

S

m2
t

)
(1.131)

As seen earlier, for large values of the pseudoscalar Higgs boson mass, MA ≫ MZ , the lighter

Higgs boson mass reaches its maximum for a given tanβ value. In the ϵ approximation, this

value reads

Mh
MA≫MZ→

√
M2

Z cos2 2β + ϵ sin2 β

[
1 +

ϵM2
Z cos2 β

2M2
A(M2

Z + ϵ sin2 β)
−

M2
Z sin2 β + ϵ cos2 β

2M2
A

]
(1.132)

In this limit, the heavier CP–even and charged Higgs bosons, with squared masses given by

MH
MA≫MZ→ MA

[
1 +

M2
Z sin2 2β + ϵ cos2 β

2M2
A

]
, MH±

MA≫MZ→ MA

[
1 +

M2
W

2M2
A

]
(1.133)

become almost degenerate in mass MH ≃ MH± ≃ MA. This is an aspect of the decoupling

limit [103] which will be discussed in more detail later.
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where the abbreviations ℓS = log(M2
S/m2

t ), µ̄ = µ/MS, at,b = At,b/MS and xt = Xt/MS have

been used. The factors cij take into account the leading two–loop corrections due to the top

and bottom Yukawa couplings and to the strong coupling constant g3; they read

cij =
1

32π2
(tijλ

2
t + bijλ

2
b − 32g2

3) (1.128)

with the various coefficients given by

(t11, t12, t21, t22, t31, t32) = (12,−4, 6,−10, 9, 7)

(b11, b12, b21, b22, b31, b32) = (−4, 12, 2, 6, 18,−1, 15) (1.129)

The expressions eq. (1.127) provide a good approximation of the bulk of the radiative cor-

rections. However, one needs to include the full set of corrections mentioned previously to

have precise predictions for the Higgs boson masses and couplings to which we turn now.

1.3.2 The radiatively corrected Higgs masses

The radiately corrected CP–even Higgs boson masses are obtained by diagonalizing the mass

matrix eq. (1.125). In the approximation where only the leading correction controlled by the

top Yukawa coupling, eq. (1.126), are implemented, the masses are simply given by [37]

M2
h,H =

1

2
(M2

A + M2
Z + ϵ)

[

1 ∓

√

1 − 4
M2

ZM2
A cos2 2β + ϵ(M2

A sin2 β + M2
Z cos2 β)

(M2
A + M2

Z + ϵ)2

]

(1.130)

In this approximation, the charged Higgs mass does not receive radiative corrections, the

leading contributions being of O(αm2
t ) in this case [69,110,133]. A very simple expression for

the corrected charged Higgs boson mass, which gives a result that is rather accurate is [134]

MH± =
√

M2
A + M2

W − ϵ+ with ϵ+ =
3GµM2

W

4
√

2π2

[ m2
t

sin2 β
+

m2
b

cos2 β

]
log
(M2

S

m2
t

)
(1.131)

As seen earlier, for large values of the pseudoscalar Higgs boson mass, MA ≫ MZ , the lighter

Higgs boson mass reaches its maximum for a given tanβ value. In the ϵ approximation, this

value reads

Mh
MA≫MZ→

√
M2

Z cos2 2β + ϵ sin2 β

[
1 +

ϵM2
Z cos2 β

2M2
A(M2

Z + ϵ sin2 β)
−

M2
Z sin2 β + ϵ cos2 β

2M2
A

]
(1.132)

In this limit, the heavier CP–even and charged Higgs bosons, with squared masses given by

MH
MA≫MZ→ MA

[
1 +

M2
Z sin2 2β + ϵ cos2 β

2M2
A

]
, MH±

MA≫MZ→ MA

[
1 +

M2
W

2M2
A

]
(1.133)

become almost degenerate in mass MH ≃ MH± ≃ MA. This is an aspect of the decoupling

limit [103] which will be discussed in more detail later.
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Figure 1: The maximal value of the h boson mass as a function of Xt/MS in the pMSSM when
all other soft SUSY–breaking parameters and tan� are scanned in the range Eq. (4) (left) and the
contours for 123< Mh <127 GeV in the [MS , Xt] plane for some selected range of tan� values (right).

the theoretical uncertainties in the determination of Mh are included. Hence, only the scenar-
ios with large Xt/MS values and, in particular, those close to the maximal mixing scenario
At/MS ⇡

p
6 survive. The no–mixing scenario is ruled out for MS

<
⇠ 3 TeV, while the typical

mixing scenario needs large MS and moderate to large tan � values. We obtain M
max
h

=136,
123 and 126 GeV in, the maximal, zero and typical mixing scenarios, respectively3.

The right–hand side of Fig. 1 shows the contours in the [MS, Xt] plane where we obtain the
mass range 123 GeV < Mh < 127 GeV from our pMSSM scan with Xt/MS

<
⇠ 3; the regions in

which tan � <
⇠ 3, 5 and 60 are highlighted. One sees again that a large part of the parameter

space is excluded if the Higgs mass constraint is imposed4.

3. Implications for constrained MSSM scenarios

In constrained MSSM scenarios (cMSSM)5, the various soft SUSY–breaking parameters obey
a number of universal boundary conditions at a high energy scale such as the GUT scale, thus
reducing the number of basic input parameters to a handful. These inputs are evolved via the
MSSM renormalisation group equations down to the low energy scale MS where the conditions
of proper electroweak symmetry breaking (EWSB) are imposed. The Higgs and superparticle

3We have checked that the program FeynHiggs [18] gives comparable values for Mh within ⇡ 2 GeV which
we consider to be our uncertainty as in Eq. (5).

4Note that the M
max
h values given above are obtained with a heavy superparticle spectrum, for which the

constraints from flavour physics and sparticle searches are evaded, and in the decoupling limit in which the h

production cross sections and the decay branching ratios are those of the SM Higgs boson. However, we also
searched for points in the parameter space in which the boson with mass ' 125 GeV is the heavier CP–even
H

0 boson which corresponds to values of MA of order 100 GeV. Among the ⇡ 106 valid MSSM points of the
scan, only ⇡ 1.5 ⇥ 10�4 correspond to this scenario. However, if we impose that the H

0 cross sections times
branching ratios are compatible with the SM values within a factor of 2 and include the constraints from MSSM
Higgs searches in the ⌧

+
⌧
� channel, only ⇡ 4 ⇥ 10�5 of the points survive. These are all excluded once the

b ! s� and Bs ! µ
+
µ
� constraints are imposed. A detailed study of the pMSSM Higgs sector including the

dark matter and flavour constraints as well as LHC Higgs and SUSY search limits is presented in Ref. [19].
5In this paper cMSSM denotes all constrained MSSM scenarios, including GMSB and AMSB.

4

the case of the heavier CP–even H boson is just opposite: its couplings are close to unity

for MA <∼ Mmax
h [which in fact is very close to the minimal value of MH , Mmin

H ≃ Mmax
h ,

in particular at large tanβ], while above this limit, the H couplings to gauge bosons are

strongly suppressed. Note that the mixing Xt in the stop sector does not alter this pattern,

its main effect being simply to shift the value of Mmax
h .

Figure 1.8: The normalized couplings squared of the CP–even MSSM neutral Higgs bosons
to gauge bosons as a function of MA for two values tanβ = 3 and 30, in the no mixing (light
lines) and maximal mixing (thick lines) scenarios. The full set of radiative corrections is
included with the same inputs as in Fig. 1.7.

In the case of the Higgs–fermion couplings, there are additional one–loop vertex correc-

tions which modify the tree–level Lagrangian that incorporates them [67–70]. In terms of

the two Higgs doublets H1 and H2 which generate the couplings of up–type and down–type

fermions, the effective Lagrangian can be written at one–loop as [104]

− LYuk = ϵij
[
(λb + δλb)b̄RH i

1Q
j
L + (λt + δλt)t̄RQi

LHj
2 + (λτ + δλτ )τ̄RH i

1L
j
]

+ ∆λbb̄RQi
LH i∗

2 + ∆λτ τ̄RLiH i∗
2 + ∆λtt̄RQi

LH i∗
1 + h.c. (1.138)

Thus, at this order, in addition to the expected corrections δλt,b which alter the tree–level

Lagrangian, a small contribution ∆λt (∆λb) to the top (bottom) quark will be generated

by the doublet H1 (H2). The top and bottom quark Yukawa couplings [the discussion for

the τ couplings follows that of the b–quark couplings], defining λb∆b = δλb + ∆λb tanβ and

λt∆t = δλt + ∆λt cot β, are then given by [67–70]

λb =

√
2mb

v cos β

1

1 + ∆b
, λt =

√
2mt

v sin β

1

1 + ∆t
(1.139)

The leading parts of the total corrections ∆t,b are in fact those which affect the b and t quark

masses in the MSSM, already discussed in §1.1.6 and given in eqs. (1.45) and (1.48). The
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1.1 Electroweak fine-tuning

One way to evaluate EWFT in SUSY models is to examine the minimization condition

from the Higgs sector scalar potential which determines the Z boson mass. (Alternatively,

one may examine the mass formula for mh and arrive at similar conclusions.) Minimization

of the one-loop e↵ective potential Vtree +�V , leads to

M2

Z

2
=

m2

Hd
+ ⌃d

d
� (m2

Hu
+ ⌃u

u) tan
2 �

tan2 � � 1
� µ2 , (1.1)

where ⌃u
u and ⌃d

d
are radiative corrections that arise from the derivatives of �V evaluated

at the minimum. Eq. (1.1) reduces to the familiar tree-level expression[6] for M2

Z
when

radiative correction terms are ignored. As we will discuss in detail below, ⌃u
u and ⌃d

d
include

contributions, listed in the Appendix, from various particles and sparticles with sizeable

Yukawa and/or gauge couplings to the Higgs sector. To obtain a natural value of MZ on

the left-hand-side, one would like each term Ci (with i = Hd, Hu, µ as well as ⌃u
u(k),

⌃d

d
(k), where k denotes the various contributions to the ⌃s that we just mentioned) on the

right-hand-side to have an absolute value of order M2

Z
/2. Noting that all entries in (1.1)

are defined at the weak scale, we are led to define the electroweak fine-tuning parameter1

by [20]

�EW ⌘ maxi (Ci) /(M
2

Z/2) , (1.2)

where CHu
= |�m2

Hu
tan2 �/(tan2 � � 1)|/, CHd

= |m2

Hd
/(tan2 � � 1)|/ and Cµ = |� µ2|,

along with analogous definitions for C⌃u
u(k)

and C
⌃

d

d
(k)

. Low �EW means less fine-tuning.

Since CHd
and C

⌃
d

d
(k)

terms are suppressed by tan2 � � 1, for even moderate tan� values

this expression reduces approximately to

M2

Z

2
' �(m2

Hu
+ ⌃u

u)� µ2 . (1.3)

We see that to get low �EW we require |�m2

Hu
| ⇠ M2

Z
/2 and µ2 ⇠ M2

Z
/2. The question

then arises: what is the model and can we find a set of model parameters such that

�EW ⇠ 1� 30, corresponding to better than ��1

EW
= 3% EWFT? Note that �EW depends

only on the weak scale parameters of the theory and hence is essentially fixed by the particle

spectrum, independent of how superpartner masses arise.

To understand how the underlying framework for superpartner masses may be relevant,

consider a model with input parameters defined at some high scale ⇤ � MSUSY, where

MSUSY is the SUSY breaking scale ⇠ 1 TeV and ⇤ may be as high as MGUT or even the

reduced Planck mass MP . Then

m2

Hu
(MSUSY) = m2

Hu
(⇤) + �m2

Hu
(1.4)

1Barbieri and Giudice[18] (and, even earlier, Ellis et al.[19]) define a fine tuning measure �BG =

max|(ai/M
2
Z)@M

2
Z/@ai| for input parameters ai. Our definition coincides with theirs when M2

Z depends

linearly on input parameters (such as µ2, m2
Hu

or m2
Hd

using electroweak scale parameters) but di↵ers when

the parameter dependence is non-linear. For electroweak scale parameters, the non-linear dependence only

occurs in the radiative correction terms ⌃u

u and ⌃d

d and in tan�.
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`!-problem’ of the MSSM: add a singlet superfield 

  

  

- 5 neutral Higgs bosons: h, hs, H and as, A 
- Possible enhancement in the tree-level mass of h 

!6

THE (Z3-INVARIANT) NEXT-TO-MSSM

The MSSM Superpotential, from which the scalar potential is derived, is given as

WMSSM = hu Q̂ · Ĥu Û c
R + hd Ĥd · Q̂ D̂c

R + he Ĥd · L̂ Êc
R + µĤu · Ĥd , (4)

where Q̂, Û c
R, D̂R, L̂ and ÊR are the quark and lepton superfields and hu, hd and he are the

corresponding Yukawa couplings. In this model, the mass of H± is given at LO as

m2
H± = m2

A +m2
W , (5)

where mW is the mass of the W boson. In order to allow the H± → W±Hobs decay, one requires
mH± > mHobs

+mW , which translates into the requirement mA ! 190GeV. In the MSSM, under
such a condition, the tree-level mass of the SM-like Higgs boson, HSM, has an upper limit

m2
HSM

≤ m2
Z cos2 2β , (6)

where mZ is the mass of the Z boson. Therefore, if the HSM is identified with the Hobs and hence
required to have a mass close to 125GeV in accordance with the LHC measurement, a large value of
tan β is necessary. Furthermore, the absence of any significant deviations of the signal strengths of
the Hobs from the SM expectations so far [44] seems to be pushing the MSSM towards the so-called
‘decoupling regime’. This regime corresponds to mA ! 150GeV for tan β ! 10 and yields SM-like
couplings of the HSM, in addition to a maximal tree-level mass, as noted above. The net effect of all
these observations is that a H± with mass greater than 200GeV and a HSM with the correct mass
and SM-like couplings can be obtained simultaneously only for large tan β. However, according to
Eqs. (2) and (3), tan β ∼ 10 not only diminishes the BR(H± → W±HSM) but also the gb → tH−

cross section.
The complete MSSM contains more than 120 free parameters in addition to those of the SM.

In its phenomenological version, the pMSSM, one assumes the matrices for the sfermion masses
and for the trilinear scalar couplings to be diagonal, which reduces the parameter space of the
model considerably. Here, since we are mainly concerned with the Higgs sector of the model, we
further impose the following mSUGRA-inspired (where mSUGRA stands for minimal supergravity)
universality conditions:

m0 ≡ MQ1,2,3 = MU1,2,3 = MD1,2,3 = ML1,2,3 = ME1,2,3 ,

m1/2 ≡ 2M1 = M2 =
1

3
M3 ,

A0 ≡ At = Ab = Aτ , (7)

where MQ1,2,3 , MU1,2,3 , MD1,2,3 , ML1,2,3 and ME1,2,3 are the soft masses of the sfermions, M1,2,3

those of the gauginos and At,b,τ the soft trilinear couplings. This leaves us with a total of six free
parameters, namely m0, m1/2, A0, mA, tan β and the Higgs-higgsino mass parameter µ.

• NMSSM

The NMSSM [45, 46, 47] (see, e.g., [48, 49] for reviews) contains a singlet Higgs field in addition to
the two doublet fields of the MSSM. The scale-invariant Superpotential of the NMSSM is written
as

WNMSSM = MSSM Yukawa terms + λŜĤu · Ĥd +
κ

3
Ŝ3 , (8)

where Ŝ is the additional Higgs singlet Superfield and λ and κ are dimensionless Yukawa couplings.
The introduction of the new singlet field results in a total of five neutral Higgs mass eigenstates

6

2.1 Tree level Higgs potential and mass matrix

The superpotential in Eq. (2) leads to the tree level Higgs potential containing the D-, F - and soft
SUSY-breaking terms:

V0 =
∣∣λ
(
H+

u H−
d −H0

uH
0
d

)
+ κS2

∣∣2

+
(
m2

Hu
+ |µ+ λS|2

)(∣∣H0
u

∣∣2 +
∣∣H+

u

∣∣2
)
+
(
m2

Hd
+ |µ+ λS|2

)(∣∣H0
d

∣∣2 +
∣∣H−

d

∣∣2
)

+
g2

4

(∣∣H0
u

∣∣2 +
∣∣H+

u

∣∣2 −
∣∣H0

d

∣∣2 −
∣∣H−

d

∣∣2
)2

+
g22
2

∣∣H+
u H0∗

d +H0
uH

−∗
d

∣∣2

+m2
S |S|2 +

(
λAλ

(
H+

u H−
d −H0

uH
0
d

)
S +

1

3
κAκ S

3 + h.c.
)
, (3)

where g2 ≡ g21+g22
2 , with g1 and g2 being the U(1)Y and SU(2)L gauge couplings, respectively,

and Aλ ≡ |Aλ|eiφAλ and Aκ ≡ |Aκ|eiφAκ are dimensionful soft SUSY-breaking trilinear couplings.
These, along with λ and κ, are the only complex parameters appearing in the tree level Higgs
potential, since the soft SUSY-breaking masses m2

Hu
, m2

Hd
and m2

Hu
are real.

In order to obtain the physical Higgs states, the above potential is expanded around the VeVs
of the three Higgs fields as

H0
d =

(
1√
2
(vd +HdR + iHdI)

H−
d

)

,

H0
u = eiθ

(
H+

u
1√
2
(vu +HuR + iHuI)

)

,

S =
eiϕ√
2
(s+ SR + iSI) . (4)

The potential in Eq. (3) then has a minimum at non-vanishing vu, vd and s only if the following
so-called tadpole conditions are satisfied:

1

vd

〈
∂V0

∂HdR

〉
= m2

Hd
+

g2

4
(v2d − v2u)−Rλ

vus

vd
+

|λ|2

2
(v2u + s2)−

1

2
R
vus2

vd
= 0 ,

1

vu

〈
∂V0

∂HuR

〉
= m2

Hu
−

g2

4
(v2d − v2u)−Rλ

vds

vu
+

|λ|2

2
(v2d + s2)−

1

2
R
vds2

vu
= 0 ,

1

s

〈
∂V0

∂SR

〉
= m2

S −Rλ
vdvu
s

+
|λ|2

2
(v2d + v2u) + |κ|2s2 −Rvdvu +Rκs = 0 , (5)

1

vu

〈
∂V0

∂HdI

〉
=

1

vd

〈
∂V0

∂HuI

〉
= Iλs+

1

2
Is2 = 0 ,

1

s

〈
∂V0

∂SI

〉
= Iλ

vdvu
s

− Ivdvu − Iκs = 0 , (6)

where we have defined

R = |λ||κ| cos(φ′
λ − φ′

κ) , I = |λ||κ| sin(φ′
λ − φ′

κ) ,

Rλ =
|λ||Aλ|√

2
cos(φ′

λ + φAλ
) , Rκ =

|κ||Aκ|√
2

cos(φ′
κ + φAκ) ,

Iλ =
|λ||Aλ|√

2
sin(φ′

λ + φAλ
) , Iκ =

|κ||Aκ|√
2

sin(φ′
κ + φAκ) , (7)
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The fourth term on the right hand side of Eq. (1) replaces the Higgs-higgsino mass term, µĤuĤd,
present in the MSSM superpotential. The Higgs singlet superfield acquires a non-zero vacuum
expectation value (VEV), vs, after EWSB. This vs is naturally of the order of the SUSY-breaking

scale MSUSY (herein operationally defined as M
2
SUSY =

m
2
t̃1
+m

2
t̃2

2 , where m
t̃1

and m
t̃2

are the physical
masses of the two stops), thus solving the µ-problem of the MSSM by generating an e↵ective µ-term,

µe↵ ⌘ �

D
Ŝ

E
= �vs . (2)

The absence of a µĤuĤd term, however, results in a U(1)PQ symmetry, which is explicitly broken
here by the last term in Eq. (1), thus introducing instead a discrete Z3 symmetry and making the
NMSSM superpotential scale-invariant as well.

The Higgs potential, derived from the above superpotential, is given as

V0 = |�
�
H

+
u H

�
d
� H

0
uH

0
d

�
+ S

2
|
2
+
⇣
m

2
Hu

+ |µ + �S|
2
⌘⇣

|H
0
u|

2
+ |H

+
u |

2
⌘

+
⇣
m

2
Hd

+ |µ + �S|
2
⌘⇣

|H
0
d
|
2
+ |H

�
d
|
2
⌘

+
g
2

4

⇣
|H

0
u|

2
+ |H

+
u |

2
� |H

0
d
|
2
� |H

�
d
|
2
⌘2

+
g
2
2

2
|H

+
u H

0⇤
d

+ H
0
uH

�⇤
d

|
2
+ m

2
S |S|

2 +


�A�

�
H

+
u H

�
d
� H

0
uH

0
d

�
S +

1

3
AS

3 + h.c.

�
, (3)

where g1 and g2 are the U(1)Y and SU(2)L gauge coupling constants, respectively, and g
2 =

g
2
1+g

2
2

2 .
Here, A� and A are soft SUSY-breaking Higgs trilinear couplings, while mHd

, mHu
and mS denote

the soft Higgs masses. The fields Hd, Hu and S are expanded about their respective VEVs, vd, vu

and vs, as

H
0
d

=

 
1p
2
(vd + HdR + iHdI)

H
�
d

!
, H

0
u = e

i�u

 
H

+
d

1p
2
(vu + HuR + iHuI)

!
, S

0 =
e
i�s

p
2

(vs+SR+iSI).

(4)
For correct EWSB, the V0, rewritten in terms of these expanded fields, should have a minimum at
non-vanishing vd, vu and vs, implying

⌧
�V0

�✓

�
= 0 for ✓ = HdR, HuR, SR, HdI , HuI , SI , (5)

which leads to six ‘tadpole conditions’ (see, e.g., [17]).
Taking the second derivative of V0 at the vacuum yields the tree-level 6⇥ 6 neutral Higgs mass

matrix-squared, M2
0, in the basis HT = (HdR, HuR, SR, HdI , HuI , SI). It can be expressed in the

general form

M
2
0 =

0

BB@

M
2
S

M
2
SP

�
M

2
SP

�
T

M
2
P

1

CCA , (6)

where the 3⇥3 block M
2
S

corresponds to the CP-even interaction states (HdR, HuR, SR), the 3⇥3
block M

2
P

to the CP-odd states (HdI , HuI , SI), while M
2
SP

is responsible for mixing between the
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Masses of the two lightest scalars are given by 
(for large-ish tanβ - H, A decoupled) 
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(for large-ish tanβ - H, A decoupled) 
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Masses of the two lightest scalars are given by 
(for large-ish tanβ - H, A decoupled) 
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Masses of the two lightest scalars are given by 
(for large-ish tanβ - H, A decoupled) 
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Quantum interference from loop effects, e.g, 

Hi
q, q̃ f, f̃ ,W±, H±

γ

γ

g

g

the generally exploited simplistic case of assuming two separate resonances and the one where the
two nearly mass-degenerate states interfere due to the inclusion of the complete propagator matrix
in the amplitude calculation. These di↵erences are more visible with a smaller di-photon mass
resolution and a larger data sample. Finally, in attempting to distinguish the two approaches, we
have also noted a tension in the underlying dynamics. Any distorsion e↵ect of a single BW shape
can only be exploited when the mass di↵erence is su�ciently larger than the assumed width of
the bins (which should naturally be consistent with the available experimental mass resolution) in
the distribution of the di↵erential cross section. However, a larger mass di↵erence leads to smaller
interference e↵ects.
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A Appendix

The absorptive part of the Higgs propagator matrix can be written as
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We reproduce here the expressions for the individual contributions from [14], where those to vector
bosons as well as associated Higgs and vector boson pairs were derived using the Pinch Tech-
nique [55, 56], which ensures their linear dependence on s. These two contributions are given
as
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The contribution from loops of Higgs boson pairs reads
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Figure 2: The τ+τ− production plane with definitions of the scattering angle Θ. The
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boson propagator matrix D(ŝ) in (3.1) 3. This is given by

D(ŝ) = ŝ
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(3.2)

where the inversion of the 3-by-3 matrix is carried out analytically. In (3.2), the absorptive

parts of the Higgs self-energies ℑmΠ̂ij(ŝ) are given in Section 2 and MH1,2,3 are the one-

loop Higgs-boson pole masses, where higher-order absorptive effects on MH1,2,3 have been

ignored [15]. In the same context, the off-shell dispersive parts of the Higgs-boson self-

energies in the Higgs-boson propagator matrix D(ŝ) have also been neglected, since these

are formally higher-order effects and very small in the relevant Higgs-boson resonant region.

Finally, we include in (3.1) the finite loop-induced corrections to the couplings of Higgs

bosons to b quarks, gS,P
Hi b̄b

, and τ leptons, gS,P
Hjτ+τ− , due to the exchanges of gauginos and

Higgsinos, as has been discussed in Section 2.

In the centre-of-mass coordinate system for the bb̄ pair, the helicity amplitudes are

given by

Mbb̄(σσ̄; λλ̄) = −
g2mbmτ

4M2
W

⟨σ; λ⟩bδσσ̄δλλ̄ , (3.3)

where

⟨σ; λ⟩b ≡
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i,j=1,2,3

(λβb gS
Hib̄b

+ igP
Hib̄b

) Dij(ŝ) (σβτ gS
Hjτ+τ− − igP

Hjτ+τ−) , (3.4)

3Strictly speaking, the complete propagator matrix D(ŝ) is a 4× 4-dimensional matrix spanned by the

basis (H1, H2, H3, G
0) [27]. However, to a good approximation, we may neglect the small off-resonant

self-energy transitions of the Higgs bosons H1,2,3 to the neutral would-be Goldstone boson G0.
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Figure 1: Illustration of the e↵ect of mixing in the propagator induced by quantum corrections.

where |Dij(ŝ)|
2 is given by Eq. (19). From the above equation, one obtains the di↵erential cross

section (recall that ⌧ = ŝ
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) as
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4 Numerical analysis

We first performed numerical scanning of the parameter space of the NMSSM, requiring H1 and H2

to lie within the 123 GeV� 127 GeV range.2 Our first scan corresponded to the rNMSSM, wherein
su�cient mass degeneracy near 125 GeV between the two lightest scalars can generally be obtained
for large values of the couplings � and  and a relatively small tan �, which results in maximal
mixing between the doublet- and singlet-like states, as noted in some earlier studies [9]. In the
rNMSSM, while it is also possible for A1 to lie near 125GeV [11], it does not mix with the SM-like
H1 when the coupling parameters are all real. Therefore, the corresponding o↵-diagonal absorptive
parts in the propagator matrix given in Eq. (19) are zero. When the complex phases are turned on
though, all the Higgs states become CP-indefinite, and any of the o↵-diagonal terms in the full 5⇥5
propagator matrix can be non-zero and contribute to the interference e↵ects. Therefore, either one
of the scalar-singlet-like and pseudoscalar-singlet-like states can have strong mass-degeneracy with
the ⇠ 125 GeV SM-like state and interfere with it.

As stated earlier, at the tree level, only the phase combination �� � � + �u � 2�s appears in
the Higgs sector of the cNMSSM. Furthermore, several studies [16, 25, 26] have shown that, out of
all the individual phases, including those appearing beyond the Born approximation, the phase �

is virtually unconstrained by the measurements of the fermion Electric Dipole Moments (EDMs).
Therefore, after setting all the other phases to 0�, we performed two separate parameter space scans
of the cNMSSM also, with the value of � fixed to 3� in one and to 10� in the other. In Tab. 1 we
list the scanned ranges of the free parameters (input at the EW scale), which assume the following
universality conditions:

M0 ⌘ MQ1,2,3 = MU1,2,3 = MD1,2,3 = ML1,2,3 = ME1,2,3 ;

M1/2 ⌘ 2M1 = M2 =
1

3
M3 ; A0 ⌘ A

t̃
= A

b̃
= A⌧̃ ,

where MQ1,2,3 , MU1,2,3 , MD1,2,3 , ML1,2,3 and ME1,2,3 are the soft masses of the sfermions, M1,2,3

those of the gauginos and A
t̃,b̃,⌧̃

the soft trilinear couplings. These ranges are consistent across the

2The extended range of Higgs boson masses around the actual measured experimental value of ⇠ 125GeV is to
allow for upto ±2GeV uncertainty from unknown higher order corrections in their model prediction.
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rNMSSM, while it is also possible for A1 to lie near 125GeV [11], it does not mix with the SM-like
H1 when the coupling parameters are all real. Therefore, the corresponding o↵-diagonal absorptive
parts in the propagator matrix given in Eq. (19) are zero. When the complex phases are turned on
though, all the Higgs states become CP-indefinite, and any of the o↵-diagonal terms in the full 5⇥5
propagator matrix can be non-zero and contribute to the interference e↵ects. Therefore, either one
of the scalar-singlet-like and pseudoscalar-singlet-like states can have strong mass-degeneracy with
the ⇠ 125 GeV SM-like state and interfere with it.

As stated earlier, at the tree level, only the phase combination �� � � + �u � 2�s appears in
the Higgs sector of the cNMSSM. Furthermore, several studies [16, 25, 26] have shown that, out of
all the individual phases, including those appearing beyond the Born approximation, the phase �

is virtually unconstrained by the measurements of the fermion Electric Dipole Moments (EDMs).
Therefore, after setting all the other phases to 0�, we performed two separate parameter space scans
of the cNMSSM also, with the value of � fixed to 3� in one and to 10� in the other. In Tab. 1 we
list the scanned ranges of the free parameters (input at the EW scale), which assume the following
universality conditions:
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the generally exploited simplistic case of assuming two separate resonances and the one where the
two nearly mass-degenerate states interfere due to the inclusion of the complete propagator matrix
in the amplitude calculation. These di↵erences are more visible with a smaller di-photon mass
resolution and a larger data sample. Finally, in attempting to distinguish the two approaches, we
have also noted a tension in the underlying dynamics. Any distorsion e↵ect of a single BW shape
can only be exploited when the mass di↵erence is su�ciently larger than the assumed width of
the bins (which should naturally be consistent with the available experimental mass resolution) in
the distribution of the di↵erential cross section. However, a larger mass di↵erence leads to smaller
interference e↵ects.
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A Appendix

The absorptive part of the Higgs propagator matrix can be written as

Im⇧̂ij(s) = Im⇧̂
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V V
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HV

ij (s) + Im⇧̂
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ij (s) . (A.1)

We reproduce here the expressions for the individual contributions from [14], where those to vector
bosons as well as associated Higgs and vector boson pairs were derived using the Pinch Tech-
nique [55, 56], which ensures their linear dependence on s. These two contributions are given
as
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The contribution from loops of Higgs boson pairs reads
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boson propagator matrix D(ŝ) in (3.1) 3. This is given by
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ŝ − M2
H1
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where the inversion of the 3-by-3 matrix is carried out analytically. In (3.2), the absorptive

parts of the Higgs self-energies ℑmΠ̂ij(ŝ) are given in Section 2 and MH1,2,3 are the one-

loop Higgs-boson pole masses, where higher-order absorptive effects on MH1,2,3 have been

ignored [15]. In the same context, the off-shell dispersive parts of the Higgs-boson self-

energies in the Higgs-boson propagator matrix D(ŝ) have also been neglected, since these

are formally higher-order effects and very small in the relevant Higgs-boson resonant region.

Finally, we include in (3.1) the finite loop-induced corrections to the couplings of Higgs

bosons to b quarks, gS,P
Hi b̄b

, and τ leptons, gS,P
Hjτ+τ− , due to the exchanges of gauginos and

Higgsinos, as has been discussed in Section 2.

In the centre-of-mass coordinate system for the bb̄ pair, the helicity amplitudes are

given by

Mbb̄(σσ̄; λλ̄) = −
g2mbmτ

4M2
W

⟨σ; λ⟩bδσσ̄δλλ̄ , (3.3)

where

⟨σ; λ⟩b ≡
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i,j=1,2,3

(λβb gS
Hib̄b

+ igP
Hib̄b

) Dij(ŝ) (σβτ gS
Hjτ+τ− − igP

Hjτ+τ−) , (3.4)

3Strictly speaking, the complete propagator matrix D(ŝ) is a 4× 4-dimensional matrix spanned by the

basis (H1, H2, H3, G
0) [27]. However, to a good approximation, we may neglect the small off-resonant

self-energy transitions of the Higgs bosons H1,2,3 to the neutral would-be Goldstone boson G0.
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Figure 2: Points obtained from the parameter scans of the rNMSSM (top) and of the cNMSSM
with � = 3� (bottom left) and with � = 10� (bottom right). For all the points shown, �m (colour
map) is always smaller than �H1 (x-axis) and/or �H2 (y-axis).

rNMSSM. Therefore, in order to illustrate the dependence of the interference e↵ects on the mass
di↵erence and relative widths of the two Higgs bosons, we selected BP1 such that �m ⇠ �H1/H2

,
BP2 such that �m < �H1/H2

and BP3 with �m ⌧ �H1/H2
. One sees, going from the top panel

to the bottom right one in the figure, that these e↵ects are always positive and grow larger as �m

decreases compared to �H1/H2
, as expected. Also, the interference e↵ects due to the mixing terms

in the propagators matrix (Case 3) are notably larger than those due only to the diagonal terms
(Case 2) for each of the three BPs. The deviation in the total cross section with the full propagator
matrix compared to the Case 1 for BP3 at an inclusive level is about 38%, clearly indicating that
the interference e↵ects can be quite sizeable. We point out here that although the BP3 represents
maximal enhancement of these e↵ects among all the points collected in our scans, it is possible that
they can be even slightly larger for certain other parameter combinations in the vicinity of this
BP. Note also that the total integrated cross section (obtained at NNLO in QCD, as mentioned
earlier) is generally consistent with the fiducial one, as estimated for the SM-like Higgs boson near
125 GeV [42], or measured by the ATLAS and CMS collaborations for hobs at

p
s = 13TeV.3

The values of the input parameters for all the selected BPs can be found in Tab. 2, and the

3We also point out here that a considerable discrepancy exists between the ATLAS measurement, which reads
43.2±14.9±4.9 fb [43], and the CMS one, 69+18

�22 fb [44], besides a fairly large error in each of these itself. This renders
an accurate estimation of the total cross section of little significance here and justifies our use of an approximate
constant NNLO k factor.
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Parameter Scanned range
M0 (GeV) 800 – 2000

M1/2 (GeV) 100 – 500
A0 (GeV) �3000 – 0

tan � 2 – 8
� 0.58 – 0.7
 0.3 – 0.6

µe↵ (GeV) 100 – 200
A� (GeV) 200 – 1000
A (GeV) �300 – 0

Table 1: NMSSM parameters and their scanned ranges.

three scans and correspond to the parameter space region that was noted to yield maximally mass-
degenerate H1 and H2 in a previous study [18], where more details about the scanning methodology
can also be found. It was additionally pointed out in that study that for larger values of � it gets
increasingly di�cult to obtain both H1 and H2 near 125 GeV in the cNMSSM.

For each parameter space input point generated by the scanning algorithm, the masses as well
as branching ratios (BRs) of the Higgs bosons were calculated with the public code NMSSMCALC
v2.00 [30]. The Supersymmetric Les Houches Accord [31] output file produced by NMSSMCALC
for a scanned point was then passed to HiggsBounds v4.3.1 [32] to check for the consistency of
each Higgs boson with the direct Higgs search results from LEP, Tevatron and LHC. We further
made sure that a point only got through the scan if it satisfied the limits from measurements of
the EDMs, computed intrinsically by NMSSMCALC. Finally, the CMS and ATLAS collaborations
have performed measurements of the total width of the hobs by analysing its o↵-shell production
and subsequent decays in the ZZ and W

+
W

� channels [33, 34]. The most recent observed 95%
confidence level upper limit for the two channels combined is 13MeV. Therefore, we also require
each of the H1 and H2 in a given scan to observe this constraint, unless stated otherwise for
exceptional scenarios, which may well be plausible, as such a limit presumes an underlying BW
resonance for the signal [35, 36], which is not the case here.

Next, from the points collected in each scan, we selected BPs satisfying certain specific criteria,
which will be explained later. In order to perform the numerical calculation of the cross sections
for these BPs, we implemented the expressions given in Eqs. (25) and (26) in a locally developed
fortran program. This code is linked to the LAPACK package v3.6.0 [37] for propagator matrix
inversion, as well as to a locally modified version of the VEGAS routine [38] to perform the 2-
dimensional numerical integration. As a test of the reliability of our results, for a given model
point, we calculated the cross section in the NWA for each of the two Higgs bosons with our code
and compared it with the gluon fusion cross section computed using the publicly available code
SusHi v1.6.0 [39] multiplied by its di-photon BRs obtained from NMSSMCALC. We found that
the two results agreed within 5% or better in all cases. The various Higgs boson couplings for a
given parameter space point, needed for the calculation of the absorptive parts of the propagator
matrix as well as of the production and decay form-factors in our code, were also obtained from
NMSSMCALC.

Note that our program calculates the total cross section only at the Leading Order (LO),
since implementing Higher Order (HO) corrections, e.g., as included in SusHi, is a highly involved
task beyond the scope of this work, which is aimed at comparing the e↵ects of including the full
propagator against the simplest approach of two separate BWs on the total cross section. In fact,
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4 Numerical analysis

We first performed numerical scanning of the parameter space of the NMSSM, requiring H1 and H2

to lie within the 123 GeV� 127 GeV range2. Our first scan corresponded to the rNMSSM, wherein
su�cient mass degeneracy near 125 GeV between the two lightest scalars can generally be obtained
for large values of the couplings � and  and a relatively small tan �, which results in maximal
mixing between the doublet- and singlet-like states, as noted in some earlier studies [9]. In the
rNMSSM, while it is also possible for A1 to lie near 125GeV [11], it does not mix with the SM-like
H1 when the coupling parameters are all real. Therefore, the corresponding o↵-diagonal absorptive
parts in the propagator matrix given in Eq. (19) are zero. When the complex phases are turned on
though, all the Higgs states become CP-indefinite, and any of the o↵-diagonal terms in the full 5⇥5
propagator matrix can be non-zero and contribute to the interference e↵ects. Therefore, either one
of the scalar-singlet-like and pseudoscalar-singlet-like states can have strong mass-degeneracy with
the ⇠ 125 GeV SM-like state and interfere with it.

As stated earlier, at the tree level, only the phase combination �� � � + �u � 2�s appears in
the Higgs sector of the cNMSSM. Furthermore, several studies [16, 25, 26] have shown that, out of
all the individual phases, including those appearing beyond the Born approximation, the phase �

is virtually unconstrained by the measurements of the fermion Electric Dipole Moments (EDMs).
Therefore, after setting all the other phases to 0�, we performed two separate parameter space scans
of the cNMSSM also, with the value of � fixed to 3� in one and to 10� in the other. In Tab. 1 we
list the scanned ranges of the free parameters (input at the EW scale), which assume the following
universality conditions:

M0 ⌘ MQ1,2,3 = MU1,2,3 = MD1,2,3 = ML1,2,3 = ME1,2,3 ;

M1/2 ⌘ 2M1 = M2 =
1

3
M3 ; A0 ⌘ A

t̃
= A

b̃
= A⌧̃ ,

where MQ1,2,3 , MU1,2,3 , MD1,2,3 , ML1,2,3 and ME1,2,3 are the soft masses of the sfermions, M1,2,3

those of the gauginos and A
t̃,b̃,⌧̃

the soft trilinear couplings. These ranges are consistent across the

2The extended range of Higgs boson masses around the actual measured experimental value of ⇠ 125GeV is to
allow for up to ±2GeV uncertainty from unknown higher order corrections in their model prediction.

8

Hi Hj
q, �q f, �f, W

±
, H

±

�

�

g

g

All

Figure 1: Illustration of the e↵ect of mixing in the propagator induced by quantum corrections.

where |Dij(ŝ)|
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ŝ

s

dx1

x1

g(x1)g(ŝ/sx1)
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2
X

�=±

��MDj�

��2
o

. (26)

4 Numerical analysis

We first performed numerical scanning of the parameter space of the NMSSM, requiring H1 and H2

to lie within the 123 GeV� 127 GeV range2. Our first scan corresponded to the rNMSSM, wherein
su�cient mass degeneracy near 125 GeV between the two lightest scalars can generally be obtained
for large values of the couplings � and  and a relatively small tan �, which results in maximal
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rNMSSM, while it is also possible for A1 to lie near 125GeV [11], it does not mix with the SM-like
H1 when the coupling parameters are all real. Therefore, the corresponding o↵-diagonal absorptive
parts in the propagator matrix given in Eq. (19) are zero. When the complex phases are turned on
though, all the Higgs states become CP-indefinite, and any of the o↵-diagonal terms in the full 5⇥5
propagator matrix can be non-zero and contribute to the interference e↵ects. Therefore, either one
of the scalar-singlet-like and pseudoscalar-singlet-like states can have strong mass-degeneracy with
the ⇠ 125 GeV SM-like state and interfere with it.

As stated earlier, at the tree level, only the phase combination �� � � + �u � 2�s appears in
the Higgs sector of the cNMSSM. Furthermore, several studies [16, 25, 26] have shown that, out of
all the individual phases, including those appearing beyond the Born approximation, the phase �

is virtually unconstrained by the measurements of the fermion Electric Dipole Moments (EDMs).
Therefore, after setting all the other phases to 0�, we performed two separate parameter space scans
of the cNMSSM also, with the value of � fixed to 3� in one and to 10� in the other. In Tab. 1 we
list the scanned ranges of the free parameters (input at the EW scale), which assume the following
universality conditions:

M0 ⌘ MQ1,2,3 = MU1,2,3 = MD1,2,3 = ML1,2,3 = ME1,2,3 ;

M1/2 ⌘ 2M1 = M2 =
1

3
M3 ; A0 ⌘ A

t̃
= A

b̃
= A⌧̃ ,

where MQ1,2,3 , MU1,2,3 , MD1,2,3 , ML1,2,3 and ME1,2,3 are the soft masses of the sfermions, M1,2,3

those of the gauginos and A
t̃,b̃,⌧̃

the soft trilinear couplings. These ranges are consistent across the

2The extended range of Higgs boson masses around the actual measured experimental value of ⇠ 125GeV is to
allow for up to ±2GeV uncertainty from unknown higher order corrections in their model prediction.
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 [CMS-PAS-Higgs-16-033]

[CMS Collaboration, 1605.02329]
Limit from fits to signal rates: Γobs < 41 MeV

Width estimate from Hobs*      WW and ZZ: < 13 MeV

Exclusion limits on non-SM Higgs bosons from LEP, 
Tevatron and LHC using HiggsBounds-v4.1 

EXPERIMENTAL CONSTRAINTS

LHC measurements of the fiducial cross section for 
Hobs    di-photon:

[CMS-PAS-Higgs-16-020]

Figure 2: Points obtained from the parameter scans of the rNMSSM (top) and of the cNMSSM
with � = 3� (bottom left) and with � = 10� (bottom right). For all the points shown, �m (colour
map) is always smaller than �H1 (x-axis) and/or �H2 (y-axis).

rNMSSM. Therefore, in order to illustrate the dependence of the interference e↵ects on the mass
di↵erence and relative widths of the two Higgs bosons, we selected BP1 such that �m ⇠ �H1/H2

,
BP2 such that �m < �H1/H2

and BP3 with �m ⌧ �H1/H2
. One sees, going from the top panel

to the bottom right one in the figure, that these e↵ects are always positive and grow larger as �m

decreases compared to �H1/H2
, as expected. Also, the interference e↵ects due to the mixing terms

in the propagators matrix (Case 3) are notably larger than those due only to the diagonal terms
(Case 2) for each of the three BPs. The deviation in the total cross section with the full propagator
matrix compared to the Case 1 for BP3 at an inclusive level is about 38%, clearly indicating that
the interference e↵ects can be quite sizeable. We point out here that although the BP3 represents
maximal enhancement of these e↵ects among all the points collected in our scans, it is possible that
they can be even slightly larger for certain other parameter combinations in the vicinity of this
BP. Note also that the total integrated cross section (obtained at NNLO in QCD, as mentioned
earlier) is generally consistent with the fiducial one, as estimated for the SM-like Higgs boson near
125 GeV [42], or measured by the ATLAS and CMS collaborations for hobs at

p
s = 13TeV.3

The values of the input parameters for all the selected BPs can be found in Tab. 2, and the

3We also point out here that a considerable discrepancy exists between the ATLAS measurement, which reads
43.2±14.9±4.9 fb [43], and the CMS one, 69+18

�22 fb [44], besides a fairly large error in each of these itself. This renders
an accurate estimation of the total cross section of little significance here and justifies our use of an approximate
constant NNLO k factor.
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with � = 3� (bottom left) and with � = 10� (bottom right). For all the points shown, �m (colour
map) is always smaller than �H1 (x-axis) and/or �H2 (y-axis).

rNMSSM. Therefore, in order to illustrate the dependence of the interference e↵ects on the mass
di↵erence and relative widths of the two Higgs bosons, we selected BP1 such that �m ⇠ �H1/H2

,
BP2 such that �m < �H1/H2

and BP3 with �m ⌧ �H1/H2
. One sees, going from the top panel

to the bottom right one in the figure, that these e↵ects are always positive and grow larger as �m

decreases compared to �H1/H2
, as expected. Also, the interference e↵ects due to the mixing terms

in the propagators matrix (Case 3) are notably larger than those due only to the diagonal terms
(Case 2) for each of the three BPs. The deviation in the total cross section with the full propagator
matrix compared to the Case 1 for BP3 at an inclusive level is about 38%, clearly indicating that
the interference e↵ects can be quite sizeable. We point out here that although the BP3 represents
maximal enhancement of these e↵ects among all the points collected in our scans, it is possible that
they can be even slightly larger for certain other parameter combinations in the vicinity of this
BP. Note also that the total integrated cross section (obtained at NNLO in QCD, as mentioned
earlier) is generally consistent with the fiducial one, as estimated for the SM-like Higgs boson near
125 GeV [42], or measured by the ATLAS and CMS collaborations for hobs at

p
s = 13TeV.3

The values of the input parameters for all the selected BPs can be found in Tab. 2, and the

3We also point out here that a considerable discrepancy exists between the ATLAS measurement, which reads
43.2±14.9±4.9 fb [43], and the CMS one, 69+18

�22 fb [44], besides a fairly large error in each of these itself. This renders
an accurate estimation of the total cross section of little significance here and justifies our use of an approximate
constant NNLO k factor.
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rNMSSM. Therefore, in order to illustrate the dependence of the interference e↵ects on the mass
di↵erence and relative widths of the two Higgs bosons, we selected BP1 such that �m ⇠ �H1/H2

,
BP2 such that �m < �H1/H2

and BP3 with �m ⌧ �H1/H2
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, as expected. Also, the interference e↵ects due to the mixing terms

in the propagators matrix (Case 3) are notably larger than those due only to the diagonal terms
(Case 2) for each of the three BPs. The deviation in the total cross section with the full propagator
matrix compared to the Case 1 for BP3 at an inclusive level is about 38%, clearly indicating that
the interference e↵ects can be quite sizeable. We point out here that although the BP3 represents
maximal enhancement of these e↵ects among all the points collected in our scans, it is possible that
they can be even slightly larger for certain other parameter combinations in the vicinity of this
BP. Note also that the total integrated cross section (obtained at NNLO in QCD, as mentioned
earlier) is generally consistent with the fiducial one, as estimated for the SM-like Higgs boson near
125 GeV [42], or measured by the ATLAS and CMS collaborations for hobs at

p
s = 13TeV.3

The values of the input parameters for all the selected BPs can be found in Tab. 2, and the

3We also point out here that a considerable discrepancy exists between the ATLAS measurement, which reads
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(NNLO) Cross section enhanced 
by ~40% for Γ1, Γ2 >>  m 

IMPACT ON CROSS SECTION

Figure 4: As in Fig. 3, for the BPs corresponding to the cNMSSM with � = 3�.

BP mH1 mH2 �mH �H1 �H2 �
��
pp (fb)

(GeV) (GeV) (MeV) (MeV) (MeV) Case 1 Case 2 Case 3

1 125.3688 125.3782 9.4 10.7 9.7 16.79 17.47 19.93
2 124.9498 124.9562 6.4 10.1 9.1 17.86 19.18 23.08
3 126.1641 126.1667 2.6 10.1 9.3 17.70 19.45 24.44
4 125.3960 125.4052 9.2 9.6 9.5 16.04 16.69 18.72
5 124.6742 124.6757 1.5 9.1 8.4 18.97 19.84 23.76
6 125.9018 125.9095 7.7 11.84 3.83 8.09 8.25 7.95
7 123.4402 123.4410 0.8 2.8 2.3 40.44 41.11 41.58
8 124.9873 124.9968 9.5 10.3 3.0 15.65 16.13 16.30
9 124.9669 124.9742 7.3 10.6 3.0 15.07 15.51 15.77
10 125.1874 125.1924 5.0 10.3 2.9 15.52 16.52 16.87
11 125.1826 125.1828 2.0 10.1 2.6 16.71 17.14 17.41
12 124.7542 124.7604 6.2 10.3 2.7 15.99 15.71 16.34

Table 3: The masses and total widths of H1 and H2 in the selected BPs. Also listed for each BP
is the cross section for the pp ! H ! �� process calculated in the three di↵erent ways considered.

maximal splitting between �H1 and �H2 obtained for this scenario, while �m is almost equal to
the average of these two. Notice that, while the interference is still positive for Case 2, turning on
the mixing terms in the propagator matrix contributes negatively and brings the total cross section
down again, although both these mutually opposite e↵ects are hardly at the percent level for this
particular parameter space point.

13

BP1 (�� = 0°)

Bin size: 2 MeV

Case 1: 16.79 fb

Case 2: 17.47 fb

Case 3: 19.93 fb

125.2 125.3 125.4 125.5

0

0.5

1

1.5

2

2.5

s� (GeV)

d
�

d
s^

.�
s�
(f

b
)

Figure 3: Distribution of the di↵erential cross section as a function of the di-photon invariant mass
(assumed equal to

p
ŝ) for the three benchmark points in the rNMSSM. The red, green and blue

curves correspond to the Cases 1, 2 and 3, respectively, discussed in the text.

BP � M0 M1/2 A0 tan� �  A� A µe↵

1
0�

1380.9 458.51 �2946.2 4.39 0.6970 0.4594 423.23 �5.271 113.60
2 1598.3 471.51 �2875.0 4.34 0.6907 0.4823 402.53 �17.117 110.86
3 1498.2 379.87 �2822.4 3.91 0.6969 0.4538 385.05 �16.566 117.92
4

3�

1366.6 426.35 �2694.3 3.92 0.6878 0.4657 361.11 �13.780 112.79
5 1476.6 363.81 �2969.1 4.67 0.6725 0.4304 485.87 �35.335 120.41
6 1400.3 263.79 �2852.2 4.03 0.6967 0.3310 537.25 �4.376 145.93
7 1411.7 290.97 �2501.7 4.83 0.6545 0.3085 655.95 �18.486 146.65
8

10�

1270.6 176.67 �2218.0 3.96 0.6781 0.4501 538.70 �263.98 168.65
9 1491.9 167.11 �2728.0 5.22 0.6920 0.4599 797.56 �291.36 175.84
10 1378.0 173.35 �2291.7 3.99 0.6877 0.4483 564.66 �266.73 172.87
11 1416.6 170.40 �2741.2 4.45 0.6684 0.3853 687.11 �221.00 177.72
12 1429.0 168.46 �2821.6 4.71 0.6562 0.4303 689.40 �276.65 173.02

Table 2: Values of the input parameters for all the selected BPs. All dimensionful parameters are
in units of GeV.

the mixing terms in the propagator matrix contributes negatively and brings the total cross section
down again, although both these mutually opposite e↵ects are hardly at the percent level for this
particular parameter space point.

For BPs 4–6 above, the H1 and H2 are scalar-like, which is the case for almost all the points
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Figure 3: Distribution of the di↵erential cross section as a function of the di-photon invariant mass
(assumed equal to

p
ŝ) for the three benchmark points in the rNMSSM. The red, green and blue

curves correspond to the Cases 1, 2 and 3, respectively, discussed in the text.
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Figure 3: Distribution of the di↵erential cross section as a function of the di-photon invariant mass
(assumed equal to

p
ŝ) for the three benchmark points in the rNMSSM. The red, green and blue

curves correspond to the Cases 1, 2 and 3, respectively, discussed in the text.

BP � M0 M1/2 A0 tan� �  A� A µe↵
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4

3�

1366.6 426.35 �2694.3 3.92 0.6878 0.4657 361.11 �13.780 112.79
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8

10�
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Table 2: Values of the input parameters for all the selected BPs. All dimensionful parameters are
in units of GeV.

the mixing terms in the propagator matrix contributes negatively and brings the total cross section
down again, although both these mutually opposite e↵ects are hardly at the percent level for this
particular parameter space point.

For BPs 4–6 above, the H1 and H2 are scalar-like, which is the case for almost all the points
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Benchmark points from scans

11

BP 1 4 6

tan� 13.84 5.65
� 0.0034 0.3948
 0.0068 0.6197

µe↵ (GeV) 217.73 172.92

mhs (GeV) 866.05 107.13
mH (GeV) 867.47 900.11
mas (GeV) 698.1 896.63
mA (GeV) 867.31 896.46

�m (GeV) 1.42 0.170
�hs (GeV) 1.59
�H (GeV) 1.76 4.84
�as (GeV) 5.14
�A (GeV) 3.39 4.72

BR(hs) 0.1032 0.0915
BR(H) 0.1025 0.0122
BR(as) 0.0861 10�7

BR(A) 0.1015 0.0126

�NWA (fb) 0.657 0.268
�BW (fb) 0.768 0.314
�� (%) +16.9 +17.2
�Int (fb) 0.712 0.314
�� (%) �7.3 0

Table 1: Masses and decay widths of the Higgs bosons, and the cross sec-
tions obtained using the three approaches discussed in the text, for the six
selected benchmark points. BPs 1–4 correspond to scenario-1 and BPs 5 and 6
to scenario-2. Blank space in front of a quantity implies that it is not relevant
for the given BP.
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DETECTABILITY AT THE LHC
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Figure 7: Top: The di↵erential distributions for TP1 without convolution (left) and after convo-
lution with a Gaussian of width 1 GeV for an integrated luminosity of 300 fb�1 (right). Bottom:
TP1 distributions after convolution with a Gaussian of width 300 MeV for an integrated luminosity
of 300 fb�1 (left) and 1000 fb�1 (right).

TP mH1 mH2 �mH �H1 �H2 �
��
pp (fb)

(GeV) (GeV) (MeV) (MeV) (MeV) Case 1 Case 2 Case 3

1 124.7928 124.8158 2.3 10.8 38.3 1.54 1.59 1.65
2 123.8696 124.1991 329.5 400.2 73.5 0.118 0.128 0.153
3 123.4590 123.7876 328.6 704.9 39.2 0.362 0.485 0.527

Table 4: Higgs boson masses and widths as well as the pp ! H ! �� cross sections corresponding
to the three Cases for the three selected TPs.

10s of MeVs, as seen in Tab. 4.7 But since �H1 � �m is only about 70MeV for TP2, while it is
larger than half of �H1 for TP3, the interference e↵ects are highly enhanced for the latter (about
46%) compared to the former (⇠ 30%). These figures more e↵ectively bring home the point that
a very large �H1 (as noticeable in the top-left frames) does not impact significantly the quality of
the fit to what, in the end, looks like a single object shape (as visible in the other three frames).
Though, clearly, the di↵erence between the Cases 1 and 3 is much more pronounced here than for
TP1 (and all the BPs). This di↵erence may well be established experimentally within the next few
years, more likely so the wider (one of) the Higgs states.

7The input parameters for the three TPs are provided in Tab. 5.
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WIDER WIDTHS? Figure 8: As in Fig. 7, for the TP2.
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HEAVY hs AND as IN THE NMSSM

Figure 1: ΛXi
vs. ∆mX (left), and ΓXi

vs. mX1
(right), for the points corresponding to scenario-1

(top) and scenario-2 (bottom), obtained from the parameter space scans of the NMSSM. See text
for details.

with i = 1 implying the lighter and i = 2 the heavier of the two nearly mass-degenerate scalars
(X = H) or pseudoscalars (X = A), and retained only the points for which ΛX1

> 1 or ΛX2
> 1.

These points were then split into two categories,

• scenario-1: mhs ≈ mH ,

• scenario-2: mas ≈ mA.

Note, however, that for a vast majority of the left-over points after applying the above filters, the
doublet-like H and A were found to be highly mass-degenerate and thus lying in the decoupling
regime of the MSSM. This is understandable, in particular in scenario-1, since the requirement for
hs to have a mass close to that of H forces h to be almost entirely doublet-like, with maximal
tree-level mass and SM-like couplings. Furthermore, points in scenario-2 can be further divided
into two distinct sets, one with hs lighter than h and the other with hs heavier than h. The ranges
of the input parameters for the points corresponding to the two scenarios are given in columns 3–5

7

Parameter
Initial wide Narrow range for Narrow range for scenario 2 with

scanned range scenario 1 mhs < mh mhs > mh

A0 (GeV) −5000 – −1000 −5000 – −3800 −5000 – −3800 −5000 – −1000
tan β 2 – 50 12 – 17 2 – 15 6 –17
λ 0.001 – 0.7 0.001 – 0.02 0.01 – 0.7 0.01 – 0.3
κ 0.001 – 0.7 0.001 – 0.04 0.01 – 0.7 0.01 – 0.7

µeff (GeV) 100 – 1000 100 – 300 100 – 250 100 – 400
mA (GeV) 125 – 1000 860 – 1000 870 – 1000 880 – 1000
mP (GeV) 10 – 1000 10 – 1000 880 – 1000 890 – 1000

Table 1: Wide and narrowed-down (for a given scenario) scanned ranges of the seven NMSSM
parameters considered free in this study.

interface to MicrOmegas [21, 22], to satisfy Ωχ̃0
1
h2 ≤ 0.131. This difference of the upper limit

enforced on Ωχ̃0
1
h2 from the actual PLANCK measurement of ΩDM = 0.119 [23] is to accommodate

up to a +10% possible error in its theoretical evaluation. A point was also discarded during the scan
if the spin-independent χ̃0

1-proton scattering cross section, σSI
p , did not satisfy the 95% Confidence

Level (CL) limits from the XENON1T direct detection experiment [24]. The theoretical estimate
of this cross section is also written out in the NMSSMTools output, as are those of the B-physics
observables. The points collected in the scan were further filtered by the requirement on the most
constraining of these observables to lie within 2σ of their latest measurements, which read

• BR(B → Xsγ)× 104 = 3.32 ± 0.15 [25],

• BR(Bu → τ±ντ )× 104 = 1.06 ± 0.19 [25],

• BR(Bs → µ+µ−)× 109 = 3.0± 0.85 [26].

The successful points were then run through HiggsBounds-v4.3.1 [27] to test each of the
additional NMSSM Higgs bosons against the exclusion bounds from LEP, TeVatron and LHC
as an added precaution, since this is done intrinsically by NMSSMTools itself also. These points
were further subjected to the 95% CL exclusion limits from the combined analysis of χ̃0

1χ̃
0
1 → bb̄

annihilation in dwarf spheroidal galaxies performed by the Fermi-LAT and MAGIC collabora-
tions [28], which are currently the strongest of the DM indirect detection bounds. Next, we calcu-
lated the theoretical predictions of the signal strengths, µX , of h in the SM decay channels, X =
γγ, ZZ∗, W+W−∗, τ+τ−, bb̄, for each point using the public program HiggsSignals-v1.4.0 [29].
Since the discovery of hobs, the CMS and ATLAS collaborations have frequently updated the mea-
surements of µX independently from each other, and have also released their combined results based
on the

√
s = 7 and 8TeV data for each channel in [30]. However, no such combined analysis for the√

s = 13TeV data has been published so far and, while the measurements by the two groups have
generally been in agreement with each other, there are also non-negligible differences in at least
one of the channels (see, e.g., [31] and [32]). Given that these results have increasingly favoured
the SM predictions, instead of choosing one of the two results over the other or performing fits to
both, which would be beyond the scope of this study, we simply enforced µX = 1 ± 0.34 for each
X on all points, i.e., the theoretical signal rates were required to lie within 1σ of the SM value.

Finally, it has previously been established in the literature [33, 15] that the interference effects
between two Higgs states grow as the mass-splitting between them drops off compared to the sum
of their widths. We therefore defined

ΛXi
=

ΓXi

∆mX
, with ∆mX = mX2

−mX1
, (13)

6

[B. Das, P. Poulose, S. Moretti, SM, 1804.10393]
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Figure 1: ΛXi
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vs. mX1
(right), for the points corresponding to scenario-1

(top) and scenario-2 (bottom), obtained from the parameter space scans of the NMSSM. See text
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with i = 1 implying the lighter and i = 2 the heavier of the two nearly mass-degenerate scalars
(X = H) or pseudoscalars (X = A), and retained only the points for which ΛX1

> 1 or ΛX2
> 1.

These points were then split into two categories,

• scenario-1: mhs ≈ mH ,

• scenario-2: mas ≈ mA.

Note, however, that for a vast majority of the left-over points after applying the above filters, the
doublet-like H and A were found to be highly mass-degenerate and thus lying in the decoupling
regime of the MSSM. This is understandable, in particular in scenario-1, since the requirement for
hs to have a mass close to that of H forces h to be almost entirely doublet-like, with maximal
tree-level mass and SM-like couplings. Furthermore, points in scenario-2 can be further divided
into two distinct sets, one with hs lighter than h and the other with hs heavier than h. The ranges
of the input parameters for the points corresponding to the two scenarios are given in columns 3–5
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PARAMETER CORRELATIONS: mhs ≈ mH 

Figure 2: Distributions of the input parameters, showing the correlations among them that lead to
a strong mass-degeneracy between hs and H, for the points corresponding to scenario-1 obtained
from the numerical scans.

of table 1. In order to find more solutions with a possibly enhanced mass-degeneracy in a given
scenario, we performed secondary scans of each of these narrowed-down parameters ranges. All the
constraints and conditions noted above were reapplied to the points collected in these scans and
the successful ones were combined with the corresponding set from the initial scan.

In the top left panel of figure 1, we show ΛHi
for the final set of points belonging to scenario-1

(where H1, and likewise H2, can be either one of hs or H). We see that ΓH1
can be up to 8 times

larger than ∆mH , as illustrated by the colour map. According to the top right panel, the maximum
width of H1 for these points is about 4.5GeV (while that of H2, not shown here, is much smaller,
as can be deduced from the overall smaller ΛH2

in the left panel). We point out again that ΛH2
> 1

whenever ΛH1
< 1, and vice versa. In the bottom left panel of figure 1, which similarly shows

ΛAi
for scenario-2, one notices ΓA1

being as much as 50 times larger than ∆mA. In this figure
(and in the subsequent figures for this scenario) circles correspond to the subset of points for which
mhs > mh and triangles to those with mhs < mh. Hence, one notices that, while among the former
case ΛA2

never exceeds ΛA1
, there are a few of the latter points for which both ΛA1

, ΛA1
∼ 40.
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Figure 3: Distributions of the input parameters, showing the correlations among them that lead
to a strong mass-degeneracy between as and A, for the points corresponding to scenario-2 obtained
from the numerical scans.

The bottom right panel illustrates that in the mhs > mh case large values of ΛA1
are a consequence

of large, ∼ 10GeV, values of the A1 width. In the mhs < mh case, in contrast, ΓA1
stays low

generally (between 2 − 4GeV), and large ΛA1
results mainly from the fact that ∆mA can reach

values lower than in the mhs > mh case, according to the colour map in the bottom left panel. The
points encircled in green in figure 1 are the BPs we identified for our cross section analysis, to be
explained in the next section.

We now briefly discuss the parameter combinations that lead to strong mass-degeneracies be-
tween Higgs bosons in the two scenarios. Figure 2 corresponds to scenario-1, and shows that a
smaller ∆mH favours lower values of both λ and κ but larger values of tan β (within the considered
range). The reason is that the mass-degeneracy condition in this scenario effectively implies the
decoupling of hs from h too. The smaller values of λ essential for that in turn put a virtual cut-off
on µeff ≡ λvs of about 250GeV, below which it can vary relatively freely.

Scenario-2 shows a much stronger dependence on the correlations between the input parameters,
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Figure 4: Distributions of the differential cross sections with respect to
√
ŝ for the six selected

BPs. The blue lines correspond to the amplitude containing the full Higgs propagator matrix, and
the red lines to the one assuming individual BW propagators.

distinguishable from each other, despite the poor mass resolution. Figure 5 shows these convolved
distributions. We note that the convolution spreads out the differences in the heights of the red and
blue boxes to the bins around the ones containing the resonant Higgs masses. However, the shapes
of these convolved distributions for σInt do not show any peculiar features. They could very well be
the distributions of the differential σBW for slightly different parameter space points, with the peaks
arising from a single heavy Higgs resonance or even from nearly mass-degenerate H and A (with
the underlying model being simply the MSSM). Therefore, even with an integrated luminosity as
large as 6000 fb−1 (as assumed in this figure, in order to reduce the sizes of the error bars, which
account for the statistical error only), the LHC will not be able to exploit the interference effects
in order to identify two Higgs resonances with highly identical masses.
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Figure 1: ΛXi
vs. ∆mX (left), and ΓXi

vs. mX1
(right), for the points corresponding to scenario-1

(top) and scenario-2 (bottom), obtained from the parameter space scans of the NMSSM. See text
for details.

of their widths. We therefore defined

ΛXi
=

ΓXi

∆mX
, with ∆mX = mX2

−mX1
, (13)

with i = 1 implying the lighter and i = 2 the heavier of the two nearly mass-degenerate scalars
(X = H) or pseudoscalars (X = A), and retained only the points for which ΛX1

> 1 or ΛX2
> 1.

These points were then split into two categories,

• scenario-1: mhs ≈ mH ,

• scenario-2: mas ≈ mA.

Note, however, that for a vast majority of the left-over points after applying the above filters, the
doublet-like H and A were found to be highly mass-degenerate and thus lying in the decoupling
regime of the MSSM. This is understandable, in particular in scenario-1, since the requirement for
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the distributions of the differential σBW for slightly different parameter space points, with the peaks
arising from a single heavy Higgs resonance or even from nearly mass-degenerate H and A (with
the underlying model being simply the MSSM). Therefore, even with an integrated luminosity as
large as 6000 fb−1 (as assumed in this figure, in order to reduce the sizes of the error bars, which
account for the statistical error only), the LHC will not be able to exploit the interference effects
in order to identify two Higgs resonances with highly identical masses.
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arising from a single heavy Higgs resonance or even from nearly mass-degenerate H and A (with
the underlying model being simply the MSSM). Therefore, even with an integrated luminosity as
large as 6000 fb−1 (as assumed in this figure, in order to reduce the sizes of the error bars, which
account for the statistical error only), the LHC will not be able to exploit the interference effects
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Figure 5: Distributions of the differential cross sections for the four selected BPs of scenario-1, after
convolution with Gaussians of width 150GeV. The color convention for the lines is the same as in
figure 4, and the error bars on them correspond to an assumed integrated luminosity of 6000 fb−1.

5 Conclusions

The commonly adopted approach of calculating the cross section for a given 2 → 2 process by
factorising it into the production and decay parts, assuming a narrow width(s) of the mediator(s),
by construction cannot account for the possible quantum interference among the propagators of
several mass-degenerate states. In this study, we have considered the specific example of the
NMSSM, wherein nearly identical-mass pairs of CP-even or CP-odd Higgs bosons are viable over
large regions of the parameter space. These regions were found by numerical scanning of broad
ranges of the model parameters, while imposing the most important experimental constraints,
including those from the LHC pertaining to the Higgs, exotic and flavour sectors as well as those
from the DM searches.

By analysing six illustrative benchmark points from the scanned set, we have highlighted the
importance of taking the interference effects into account. This was done by including the full
propagator matrix in the calculation of the cross section for the process of production of τ+τ− in
gluon fusion at the 14 TeV LHC. We have shown that this cross section can deviate considerably
from the one obtained by employing the NWA, and even from the one obtained assuming BW
propagators, an approach most experimental searches are based on. This deviation, in fact, implies
a reduction in the cross section in the case of two mass-degenerate CP-even Higgs bosons, as the
interference is always destructive. In the case of CP-odd states, on the other hand, no interference
effects appear. We have also reasserted the fact that the smaller the mass-splitting between two
nearby Higgs bosons compared to the sum of their widths, the larger the interference effects.

The reason for considering the τ+τ− decay channel of the Higgs bosons is that the γγ channel,
while cleaner, has a prohibitively small decay rate for Higgs bosons with masses close to 1TeV,
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CONCLUSIONS

• In the NMSSM, multiple Higgs bosons could be 
contributing to the observed ~125 GeV signal 

• Important to disentangle them - signature not 
only of new physics but also of non-minimal SUSY 

• Quantum interference effects could be the key 

• Narrow width of the signal - necessary to improve 
mass resolution of the photon pair 

• The new (pseudo)scalar of the NMSSM and the heavy 
MSSM-like (pseudo)scalar can also be mass-
degenerate, and can thus mutually interfere 

• Di-photon rate too low; poor mass resolution of 
the tau pair again an obstacle 
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