

Mass-degenerate NMSSM Higgs bosons and the effects of quantum interference

Shoaib Munir * KIAS, Seoul

SUSY2018, Barcelona July 23, 2018

*with Biswaranjan Das, Poulose Poulose and Stefano Moretti

CONTENTS

- SM-like Higgs boson in the MSSM
- The Higgs sector of the NMSSM
- Two ~125 GeV Higgs bosons
- Detection prospects at the LHC Run-II
- Mass-degenerate heavy (pseudo)scalars
- Conclusions

0 0.5 1 1.5 2 2.5 3 3.5 4
$$\Gamma_{A_1} / \Delta m$$

De

 $W_{\text{MSSM}} = h_u \,\widehat{Q} \cdot \widehat{H}_u \,\widehat{U}_R^c \,+\, h_d \,\widehat{H}_d \cdot \widehat{Q} \,\,\widehat{D}_R^c \,+\, h_e \,\widehat{H}_d \cdot \widehat{L} \,\,\widehat{E}_R^c \,+\, \mu \widehat{H}_u \cdot \widehat{H}_d$

with two complex Higgs doublet fields

$$\begin{split} H_d^0 = \left(\begin{array}{c} \frac{1}{\sqrt{2}}(v_d + H_{dR} + iH_{dI}) \\ H_d^- \end{array}\right), H_u^0 = e^{i\phi_u} \left(\begin{array}{c} H_u^+ \\ \frac{1}{\sqrt{2}}(v_u + H_{uR} + iH_{uI}) \end{array}\right) \\ \end{split}$$
 $\begin{aligned} & \textbf{Physical Higgs states:} \\ & \textbf{Scalars h and H,} \\ & \textbf{pseudoscalar A, a H^{\pm} pair} \end{aligned}$ $\begin{aligned} \mathcal{M}_0^2 = \left(\begin{array}{c|c} \mathcal{M}_S^2 & \mathbf{0} \\ \hline \mathbf{0} & \mathcal{M}_P^2 \end{array}\right) \end{aligned}$

Tree-level masses of the neutral scalars:

$$M_{h,H}^{2} = \frac{1}{2} \left[M_{A}^{2} + M_{Z}^{2} \mp \sqrt{(M_{A}^{2} + M_{Z}^{2})^{2} - 4M_{A}^{2}M_{Z}^{2}\cos^{2}2\beta} \right]$$
$$\implies M_{h}^{2} \le \min(M_{Z}^{2}, M_{A}^{2}) \cdot \cos^{2}2\beta$$

LIGHTEST HIGGS BOSON MASS

KIAS S KOREA INSTITUTE FOR ADVANCED STUDY

The mass of h receives higher order corrections, mainly from the (s)top sector

Parameter value [CMS & ATLAS Colls., 1606.02266]

HEAVIER HIGGS BOSONS

THE (Z₃-INVARIANT) NEXT-TO-MSSM

μ -problem' of the MSSM: add a singlet superfield

 $W_{\text{NMSSM}} = \text{MSSM Yukawa terms} + \lambda \widehat{S} \widehat{H}_u \cdot \widehat{H}_d + \frac{\kappa}{3} \widehat{S}^3$

$$S^0 = \frac{e^{i\phi_s}}{\sqrt{2}}(v_s + S_R + iS_I)$$

EWSB
$$\implies \mu_{\rm eff} \equiv \lambda \left< \hat{S} \right> = \lambda v_s$$

$$\begin{split} V_{0} &= \left| \lambda \left(H_{u}^{+} H_{d}^{-} - H_{u}^{0} H_{d}^{0} \right) + \kappa S^{2} \right|^{2} \\ &+ \left(m_{H_{u}}^{2} + |\mu + \lambda S|^{2} \right) \left(\left| H_{u}^{0} \right|^{2} + \left| H_{u}^{+} \right|^{2} \right) + \left(m_{H_{d}}^{2} + |\mu + \lambda S|^{2} \right) \left(\left| H_{d}^{0} \right|^{2} + \left| H_{d}^{-} \right|^{2} \right) \right) \\ &+ \frac{g^{2}}{4} \left(\left| H_{u}^{0} \right|^{2} + \left| H_{u}^{+} \right|^{2} - \left| H_{d}^{0} \right|^{2} - \left| H_{d}^{-} \right|^{2} \right)^{2} + \frac{g^{2}}{2} \left| H_{u}^{+} H_{d}^{0*} + H_{u}^{0} H_{d}^{-*} \right|^{2} \\ &+ m_{S}^{2} |S|^{2} + \left(\lambda A_{\lambda} \left(H_{u}^{+} H_{d}^{-} - H_{u}^{0} H_{d}^{0} \right) S + \frac{1}{3} \kappa A_{\kappa} S^{3} + \text{h.c.} \right), \end{split}$$

- 5 neutral Higgs bosons: h, h_s , H and a_s , A
- Possible enhancement in the tree-level mass of h

$$M_h^2 \le M_Z^2 \cos^2 2\beta + \frac{\lambda^2 v^2 \sin^2 2\beta}{2} - \frac{\lambda^2 v^2}{2\kappa^2} \left[\lambda - \sin 2\beta \left(\kappa + \frac{A_\lambda}{\sqrt{2}v_s}\right)\right]^2$$

DI-PHOTON PAIR NEAR 125 GEV

Quantum interference from loop effects, e.g,

DI-PHOTON PAIR NEAR 125 GEV

KIAS S KOREA INSTITUTE FOR ADVANCED STUDY

Quantum interference from loop effects, e.g,

$$\Im m \hat{\Pi}_{ij}^{HH}(s) = \frac{v^2}{16\pi} \sum_{k \ge l=1-5} \frac{S_{ij;kl}}{1+\delta_{kl}} g_{H_i H_k H_l} g_{H_j H_k H_l} \ \lambda^{1/2} \Big(1, \kappa_{H_k}, \kappa_{H_l} \Big) \ \Theta \Big(s - (m_{H_k} + m_{H_{H_l}})^2 \Big)$$
[J. Ellis, J. S. Lee, A. Pilaftsis, 0404167]

Warrants taking into account the full propagator

PARAMETER SPACE SCANS

12

12

[B. Das, P. Poulose, S. Moretti, SM, 1704.02941]

Mass spectrum generator: NMSSMCalc

12

KOREA INSTITUTE FOR ADVANCED

EXPERIMENTAL CONSTRAINTS

Width estimate from $H_{obs}^* \longrightarrow WW$ and ZZ: < 13 MeV[CMS Collaboration, 1605.02329]

Limit from fits to signal rates: Γ_{obs} < 41 MeV [CMS-PAS-Higgs-16-033]

LHC measurements of the fiducial cross section for $H_{obs} \rightarrow di-photon: 43.2 \pm 14.9 \pm 4.9 \,\mathrm{fb}$ [ATLAS-CONF-2016-067] $69^{+18}_{-22} \,\mathrm{fb}$ [CMS-PAS-Higgs-16-020]

Exclusion limits on non-SM Higgs bosons from LEP, Tevatron and LHC using HiggsBounds-v4.1

EXPERIMENTAL CONSTRAINTS

Width estimate from $H_{obs}^* \longrightarrow WW$ and ZZ: < 13 MeV[CMS Collaboration, 1605.02329]

Limit from fits to signal rates: Γ_{obs} < 41 MeV [CMS-PAS-Higgs-16-033]

LHC measurements of the fiducial cross section for $H_{obs} \rightarrow di-photon: 43.2 \pm 14.9 \pm 4.9 \,\mathrm{fb}$ [ATLAS-CONF-2016-067] $69^{+18}_{-22} \,\mathrm{fb}$ [CMS-PAS-Higgs-16-020]

Exclusion limits on non-SM Higgs bosons from LEP, Tevatron and LHC using HiggsBounds-v4.1

Define

Case 1:
$$\sum_{i=1-5} \sum_{\lambda,\sigma=\pm} \left| \mathcal{M}_{P_i\lambda} \frac{1}{\hat{s}-m_{H_i}^2 + i\Im \hat{m}\hat{\Pi}_{ii}(\hat{s})} \mathcal{M}_{D_i\sigma} \right|^2$$

Case 2: $\left| \sum_{i=1-5} \sum_{\lambda,\sigma=\pm} \mathcal{M}_{P_i\lambda} D_{ii} \mathcal{M}_{D_i\sigma} \right|^2$ \Rightarrow $\mathcal{A}_{gg \rightarrow yy}^2$
Case 3: $\left| \sum_{i,j=1-5} \sum_{\lambda,\sigma=\pm} \mathcal{M}_{P_i\lambda} D_{ij} \mathcal{M}_{D_j\sigma} \right|^2$

IMPACT ON CROSS SECTION

KOREA INSTITUTE FOR ADVANCED

DETECTABILITY AT THE LHC

Two small peaks

DETECTABILITY AT THE LHC

WIDER WIDTHS?

KOREA INSTITUTE FOR ADVANCED

KI

Mutually distinguishable distribution shapes

PARAMETER CORRELATIONS: *m*_{*h*_s} ≈ *m*_{*H*}

KOREA INSTITUTE FOR ADVANCED STUDY

PARAMETER CORRELATIONS: *m*_{*h*_s} ≈ *m*_{*H*}

KOREA INSTITUTE FOR ADVANCED STUDY

: FOR D

ESTABLISHING SIGNATURE

S KOREA INSTITUTE FOR ADVANCED STUDY

CONCLUSIONS

- KI S KOREA INSTITUTE FOR ADVANCED STUDY
- In the NMSSM, multiple Higgs bosons could be contributing to the observed ~125 GeV signal
- Important to disentangle them signature not only of new physics but also of non-minimal SUSY
- Quantum interference effects could be the key
- Narrow width of the signal necessary to improve mass resolution of the photon pair
- The new (pseudo)scalar of the NMSSM and the heavy MSSM-like (pseudo)scalar can also be massdegenerate, and can thus mutually interfere
- Di-photon rate too low; poor mass resolution of the tau pair again an obstacle

THANK YOU! 감사합니다!