Dark Matter Accretion in Neutron Stars

Raghuveer Garani

Université Libre de Bruxelles

 $Based\ on \\ Work\ in\ Preperation\ (arXiv:\ hep-ph/1808.vwxyz\)\\ in\ collaboration\ with\ Y.\ Genolini\ and\ T.\ Hambye$

July 23, 2018

Outline

- Introduction
- Dark Matter in Neutron Stars: Theory
 - Capture of Dark Matter by Neutron Stars
 - Dark Matter Elastic Scattering off Fermi-Degenerate Neutrons
- Consequences: New Constraints on Asymmetric Bosonic Dark Matter
 - Black Hole Formation without Bose-Einstein condensate
 - Black Hole Formation with Bose-Einstein condensate
- Conclusions

- If DM (χ) has a non vanishing $\sigma_{\chi T}$, it can be captured in celestial objects. Press and Spergel '85, Griest and Seckel '86, Gould '87, Goldman '89
- Dynamics governed by the equation

$$\frac{\mathrm{dN}_{\chi}}{\mathrm{dt}} = C_{\odot} - E_{\odot} \mathrm{N}_{\chi} - A_{\odot} \mathrm{N}_{\chi}^{2}$$

$$\mathrm{N}_{\chi} = \left(\frac{C_{\odot}}{A_{\odot}}\right)^{1/2} \frac{\tanh\left(\kappa t_{\odot}/\tau\right)}{\kappa + \frac{1}{2}E_{\odot}\tau \tanh\left(\kappa t_{\odot}/\tau\right)}.$$

- If DM (χ) has a non vanishing $\sigma_{\chi T}$, it can be captured in celestial objects. Press and Spergel '85, Griest and Seckel '86, Gould '87, Goldman '89
- Dynamics governed by the equation

$$\frac{\mathrm{dN}_\chi}{\mathrm{dt}} = C_{\odot} - E_{\odot} \mathrm{N}_\chi - A_{\odot} \mathrm{N}_\chi^2$$

$$\mathrm{N}_\chi = \left(\frac{C_{\odot}}{A_{\odot}}\right)^{1/2} \frac{\tanh\left(\kappa t_{\odot}/\tau\right)}{\kappa + \frac{1}{2} E_{\odot} \tau \tanh\left(\kappa t_{\odot}/\tau\right)}.$$

- If DM (χ) has a non vanishing $\sigma_{\chi T}$, it can be captured in celestial objects. Press and Spergel '85, Griest and Seckel '86, Gould '87, Goldman '89
- Dynamics governed by the equation

$$\frac{\mathrm{d}\mathrm{N}_\chi}{\mathrm{d}t} = C_{\odot} - E_{\odot}\mathrm{N}_\chi - A_{\odot}\mathrm{N}_\chi^2$$

$$\mathrm{N}_\chi = \left(\frac{C_{\odot}}{A_{\odot}}\right)^{1/2} \frac{\tanh\left(\kappa t_{\odot}/\tau\right)}{\kappa + \frac{1}{2}E_{\odot}\tau\tanh\left(\kappa t_{\odot}/\tau\right)}.$$

- If DM (χ) has a non vanishing $\sigma_{\chi T}$, it can be captured in celestial objects. Press and Spergel '85, Griest and Seckel '86, Gould '87, Goldman '89
- Dynamics governed by the equation

$$\frac{\mathrm{dN}_{\chi}}{\mathrm{dt}} = C_{\odot} - E_{\odot} \mathrm{N}_{\chi} - A_{\odot} \mathrm{N}_{\chi}^{2}$$

$$\mathrm{N}_{\chi} = \left(\frac{C_{\odot}}{A_{\odot}}\right)^{1/2} \frac{\tanh\left(\kappa t_{\odot}/\tau\right)}{\kappa + \frac{1}{2}E_{\odot}\tau\tanh\left(\kappa t_{\odot}/\tau\right)}.$$

Introduction: Asymmetric DM

- Motivated by the fact that the DM and baryon densities are of the same order of magnitude. Nussinov '85, Kitano '05, Kaplan '09, Cohen '09, many more
- No annihilation implies (for DM masses above $10^{-8}~{
 m GeV})$

$$N_{\chi} = C_{\odot} t_{\odot}$$
.

ullet Formation of Black Holes when N_χ equals the Chandrasekhar limit.

Dark Matter in Neutron Stars: Capture

We consider DM-neutron cross section of the form

$$\frac{d\sigma(v_{\rm rel},\cos\theta_{\rm cm})}{d\cos\theta_{\rm cm}} = \frac{\sigma_{\chi-n}}{2}.$$

The rate of DM accretion is

$$\mathsf{C}_{\odot}^{w} = \int_{0}^{\mathsf{R}_{\odot}} 4\pi r^{2} \mathrm{d}r \int_{0}^{\infty} \mathrm{d}u \left(\frac{\rho_{\chi}}{\mathsf{m}_{\chi}}\right) \frac{f_{\odot}(u)}{u} \omega(r) \int_{0}^{\nu_{e}} \mathsf{R}^{-}(\omega \to \nu) \mathrm{d}\nu,$$

with

$$R^{\pm}(\omega \to v) = 16 \,\mu_{+}^{4} n(r) N_{fd} \frac{v}{w} \int_{0}^{\infty} \mathrm{d}s \int_{0}^{\infty} \mathrm{d}t \, t \, f_{2}(u) (1 - f_{4}(u'))$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_{cm}} H^{\pm}(s, t, \omega, v).$$

Dark Matter in Neutron Stars: Capture

We consider DM-neutron cross section of the form

$$\frac{d\sigma(v_{\rm rel},\cos\theta_{\rm cm})}{d\cos\theta_{\rm cm}} = \frac{\sigma_{\chi-n}}{2}.$$

The rate of DM accretion is

$$\mathsf{C}_{\odot}^{w} = \int_{0}^{\mathsf{R}_{\odot}} 4\pi r^{2} \mathrm{d}r \int_{0}^{\infty} \mathrm{d}u \left(\frac{\rho_{\chi}}{\mathsf{m}_{\chi}}\right) \frac{f_{\odot}(u)}{u} \omega(r) \int_{0}^{\nu_{e}} \mathsf{R}^{-}(\omega \to \nu) \mathrm{d}\nu,$$

with

$$R^{\pm}(\omega \to v) = 16 \,\mu_+^4 n(r) N_{fd} \frac{v}{w} \int_0^{\infty} ds \int_0^{\infty} dt \, t \, f_2(u) (1 - f_4(u'))$$
$$\frac{d\sigma}{d\cos\theta_{cm}} H^{\pm}(s, t, \omega, v).$$

Capture Rate for Const. $\sigma_{\chi n}$

Scattering off Degenerate Neutrons: $T \rightarrow 0$

Scattering off Degenerate Neutrons: $T \neq 0$

Constraining Dark Matter-Neutron Cross Section with Neutron Stars

Chandrashekar Limit (for bosons):

$$N_{
m ch}^{
m bosons} \simeq 1.5 imes 10^{34} \left(rac{100 {
m GeV}}{m_{DM}}
ight)^2$$

Self Gravitation:

$$N^{
m self} \simeq 4.8 imes 10^{41} \left(rac{100 {
m GeV}}{m_{DM}}
ight)^{5/2} \left(rac{T_{NS}}{10^5 {
m K}}
ight)^{3/2}$$

Condition for Black Hole with BEC formation:

$$N^{BEC} \simeq 1.5 \times 10^{34} \left(\frac{100 {
m GeV}}{m_{DM}} \right)^2 + 10^{36} \left(\frac{T_{NS}}{10^5 {
m K}} \right)^3.$$

McDermott '12, Kouvaris '10 '11 '12, Bell '12, Bramante '13....

New Constraints on Asymmetric Dark Matter (Bosons)

RG, Y.Genolini and T. Hambye (in preparation)

New Constraints on Asymmetric Dark Matter (Bosons) with BEC

RG, Y.Genolini and T. Hambye (in preparation)

Conclusions and Outlook

- Considered realistic Neutron Star profile and re-evaluated DM accretion for arbitrary degeneracy with Pauli blocking.
- Strong constraints on DM-Neutron interactions can be derived. We show that constraints on DM-Neutron cross section is weaker than that in literature for DM $< 1 {
 m GeV}$.

Thank You!