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String axiverse

QCD axion Resolve the Strong CP problem
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string axions are ubiquitous
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Mass distribution is logarithmically flat

String axiverse



GW sources

Cosmologically, a typical frequency is given by the free fall time [ ~Gp ~H
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We observe the redshifted frequency £~ H[ Oa j ~a
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Multi-frequency gravitational wave observations will explore inflation, black holes
and various phase transitions which produce topological defects.

On top of these, we would like to probe extra-dimensions and compactification
in string theory.



Axion potential with plateau

Conventional axion potential
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@ If the dilute gas approximation is not good, we may have more general potentials.
For example, pure Yang-Mills theory yields the following potential

Nomura & Yamazaki 2018
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€ Multiple cosine terms give rise to the potential with plateau.
Czerny & Takahashi 2014

€ Non-minimal kinetic term leads to potential with a plateau.
The alpha-attractor type potentials belong this class.

Kallosh & Linde 2013



Alpha attractor model

Axion potential with plateau:
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Here we take the alpha attractor model as an example.
Soda & Urakawa 2017
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Background axion dynamics

Delayed oscillation

Soda & Urakawa 2017
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Axion dynamics in the linear stage

In the case of potential with plateau, there occurs the strong resonance.
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We named this strong resonance the flapping resonance.
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Flapping resonance

For large k, flapping never occurs.
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Kitajima, Soda & Urakawa 2018

For very small k, damping and
enhancement compensate exactly.

For moderate k, gradient makes
the damping time short.

Thus, there appears a peak in the
spectrum of axion fluctuations.



Non-linear lattice calculations

Kitajima, Soda & Urakawa 2018

When fliuctuations catch up the background amplitude, we
Need to resort to numerical calculations.
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What is going on actually can be seen in the snapshot.



When are GWs mostly generated?

Violent power transfer occurs Oscillon formation
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GW production triggered by flapping resonance

Kitajima, Soda & Urakawa 2018

During the violent power transfer of fluctuations, GWs will be produced efficiently.
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From the peak frequency, we know the axion mass.
From the amplitude and profile,
we can get the information of the decay constant and model parameter.



GW FOI’eSt Kitajima, Soda & Urakawa 2018

Since the string axions have broad spectrum, there must be many peak structure in
the GW spectrum, which we named the GW forest.
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Conclusion

Axions are ubiquitous in string theory.

Multi-frequency observation will be realized in
future.

The axion potential with a plateau exhibits the
flapping resonance.

String axiverse produces GW forest.

Multi-frequency observations of GW forest would
allow us to explore string compactification.



