The quest for μ->eγ and its experimental limiting factors at future high intensity muon beams

Cecilia Voena

INFN Roma

in collaboration with

G. Cavoto, A. Papa, F. Renga, E. Ripiccini

26th International Conference on Supersymmetry and Unification of Fundamental Interactions
Barcelona, July 23-27, 2018

Charged lepton flavor violation (cLFV)

 Allowed but unobservable in the Standard Model (with neutrino mass ≠0)

 Enanched, sometimes just below the experimental limit, in many New Physics models

Observation of cLFV is a clean signal of Physics beyond the Standard Model

Crivellin et. al. arXiv:1706.08511

History and future experiments

Why µ→eγ

- Theoretically can be favored or disfavored vs other cLFV processes depending on the New Physics model
- Intense muon beams available:

PSI presently: up to $10^8 \,\mu/s$, future perspectives: 10^9 - $10^{10} \,\mu/s$

 Clean experimental signature (positive muon decays at rest)

Simultaneous back-to-back e^+ and γ with $E_v = E_{e+} = 52.8 MeV$

Discriminating variables:

$$E_{e^+}, E_{\gamma}, T_{e\gamma}, \Theta_{e\gamma}$$

µ→eγ backgrounds

Accidental background

- Accidental coincidence
 of e⁺ and γ:
- Proportional to Γ^2_{μ} while signal proportional to Γ_{μ} (Γ_{μ} = beam intensity)
- Compromise between high signal and low background

Radiative muon decay background

- Proportional to Γ_{μ}
- Note: e⁺ and γ simultaneous as for signal

Michel or radiative decay: μ ->e(γ)vv

The MEG experiment for $\mu \rightarrow e\gamma$ search @PSI (Zurich)

PSI Muon beam

- Most intense continuous muon beam in the word
- Muons up to $\sim 10^8$ µ/s but MEG used only $3x10^7$ to optimize the sensitivity
- Proton beam current: ~2.2mA
- Proton target: ~15% of protons stopped
 pions=>sufrace muons (p=28MeV/c)
- Muons are stopped in a thin target inside the MEG detector

MEG BR($\mu \rightarrow e\gamma$) best word limit

- \cdot 7.5 x 10¹⁴ stopped muons in 2009-2013
- 5 discriminating variables: E_e , E_v , T_{ev} , θ_{ev} , ϕ_{ev}
- likelihood analysis

Next: MEG upgrade: MEG-II

- Same detector concept as in MEG but better efficiency/resolution
- Increase beam intensity as much as allowed by accidental background

optimized to enhance sensitivity (accidental background prop. to l^2_{μ})

MEG-II goals and schedule

What is the future of μ ->e γ searches? (after MEGII)

G. Cavoto, A. Papa, F. Renga, E. Ripiccini and CV

Eur. Phys. J. C (2018) **78**, 37

Next generation of µ→eγ searches

- Activities around the world to increase the muon beam rate to 10⁹-10¹⁰ muons/s
- Crucial to understand which factors will limit the sensitivity

$$B_{sig} \propto \Gamma_{\mu} \qquad B_{acc} \propto \Gamma_{\mu}^2 \cdot \delta E_e \cdot (\delta E_{\gamma})^2 \cdot \delta T_{e\gamma} \cdot (\delta \Theta_{e\gamma})^2 \qquad \Gamma_{\mu} = \text{beam intensity}$$

- For a given detector, there is no advantage in the increase of Γ_{μ} over a certain limit since at some point the sensitivity becomes constant (background dominated regime)
- MEGII, for example exploits 7x10⁷ muon/s (available 10⁸ muon/s)
- New Projects: HiMB@PSI, Music@RCNP

Photon reconstruction

Next generation of μ→eγ searches: photon reconstruction

To reconstruct the photon two possible approaches:

Calorimetric

- high efficiency, good resolution
- requirements:
 - * high light yield
 - * fast response

LaBr3(Ce) – a.k.a. Brillance : our simulations and tests indicate $\sigma(E)$ ~800keV $\sigma(t)$ ~30ps

Photon conversion

- low efficiency (%), extreme resolution
- photon direction
- requirements:
 - * optimization of converter thickness (large Z materials like Pb,W)

Calorimeter vs photon conversion

Sensitivity trend vs beam intensity

blue = pair conversion design

black = calorimeter design

red = calorimeter design with x2 resolution

 $\Gamma_{\mu} \; [a.u.] \\$ beam intensity

Positron reconstruction

Next generation of μ→eγ searches: positron reconstruction

- Tracking detectors in a magnetic field are the gold candidates: high efficiency, good resolution
- Need very light detector (MEGII~10⁻³X₀): positron reconstruction is ultimately limited by MS:
 - in the target & tracker-> angular resolution
 - in the tracker -> momentum resolution
- Silicon trackers are not competitive with gaseous detector in terms of resolution but could be the solution at very high rate

expected aging in MEG-II

Photon-Positron timing

Next generation of μ→eγ searches: relative time

- Timing plays a crucial role to avoid accidental coincidences
- Calorimetric approach: calorimeters+positron scintillating counters (MEG-II: T_{ev}~80ps)
- Photon conversion approach: need to measure e⁺ or e⁻ time with a fast detector for photon timing

 Several conversion layers imply to have active material behind the converter

FAST SILICON DETECTORS

 R&D on going for PET application (TT-PET)

M. Benoit et al., JINST 11 (2016) no. 03, P03011

Next generation of μ—eγ searches: possible scenarios

CALORIMETRY (R&D with LaBr₃(Ce))

T	
Reco	lution
I/COU	шион

	Variable	w/o vtx detector	w/TPC vtx detector		w/ silicon vtx detector	
			conservative	optimistic	conservative	optimistic
	$\theta_{e\gamma}$ / $\phi_{e\gamma}$ [mrad]	7.3 / 6.2	6.1 / 4.8	3.5 / 3.8	8.0 / 7.4	6.3 / 6.9
	$T_{e\gamma}$ [ps]			30		
7	E_e [keV]			100		
	E_{γ} [keV]		850			
	Efficiency [%]			42%		

gaseous detector

PHOTON CONVERSION

Resolution

	Variable	w/o vtx detector	w/TPC vtx detector		w/ silicon vtx detector	
			conservative	optimistic	conservative	optimistic
	$\theta_{e\gamma}$ / $\phi_{e\gamma}$ [mrad]	7.3 / 6.2	6.1 / 4.8	3.5 / 3.8	8.0 / 7.4	6.3 / 6.9
	$T_{e\gamma}$ [ps]			50		
	E_e [keV]			100		
	E_{γ} [keV]			320		
	Efficiency [%]			1.2 (1 L/	AYER, 0.05	X_0)

Expected sensitivity (3 years data taking)

Photon conversion approach

Photon conversion vs calorimetric approach

A few 10⁻¹⁵ level seems to be within reach for 3 years running at 10⁸ muon/s with calorimetry or 10⁹ muons/s with photon conversion

Conclusion

- Search of µ→eγ decay continues
- Best word limit from MEG experiment

BR (
$$\mu \rightarrow e\gamma$$
) < 4.2x 10⁻¹³ at 90% C.L.

- MEG-II
 - => expect a sensitivity of 4x10⁻¹⁴ in 3 years

- What's next?
 - 10⁹-10¹⁰ μ/s seems possible (HiMB,MUSIC..)
 - A few 10⁻¹⁵ level seems to be within reach for 3 years running at 10⁸ muon/s with calorimetry or 10⁹ muons/s with photon conversion approach (cheaper)
 - Further improvements require new detector concepts

Backup

Present CLFV limits

Reaction	Present limit	C.L.	Experiment	Year
$\mu^+ \to e^+ \gamma$	$< 4.2 \times 10^{-13}$	90%	MEG at PSI	2016
$\mu^+ \rightarrow e^+ e^- e^+$	$< 1.0 \times 10^{-12}$	90%	SINDRUM	1988
$\mu^- \mathrm{Ti} \to e^- \mathrm{Ti}^{\dagger}$	$< 6.1 \times 10^{-13}$	90%	SINDRUM II	1998
$\mu^- \mathrm{Pb} \to e^- \mathrm{Pb}^{\dagger}$	$< 4.6 \times 10^{-11}$	90%	SINDRUM II	1996
$\mu^- \mathrm{Au} \to e^- \mathrm{Au}^{\dagger}$	$< 7.0 \times 10^{-13}$	90%	SINDRUM II	2006
$\mu^- \mathrm{Ti} \to e^+ \mathrm{Ca}^*$	$< 3.6 \times 10^{-11}$	90%	SINDRUM II	1998
$\mu^+e^- \to \mu^-e^+$	$< 8.3 \times 10^{-11}$	90%	SINDRUM	1999
$ au o e \gamma$	$< 3.3 \times 10^{-8}$	90%	BaBar	2010
$ au o \mu \gamma$	$< 4.4 \times 10^{-8}$	90%	BaBar	2010
au ightarrow eee	$< 2.7 \times 10^{-8}$	90%	Belle	2010
$ au o \mu \mu \mu$	$< 2.1 \times 10^{-8}$	90%	Belle	2010
$ au o \pi^0 e$	$< 8.0 \times 10^{-8}$	90%	Belle	2007
$ au o \pi^0 \mu$	$< 1.1 \times 10^{-7}$	90%	BaBar	2007
$ au o ho^0 e$	$< 1.8 \times 10^{-8}$	90%	Belle	2011
$ au o ho^0 \mu$	$<1.2\times10^{-8}$	90%	Belle	2011
$\pi^0 \to \mu e$	$< 3.6 \times 10^{-10}$	90%	KTeV	2008
$K_L^0 \to \mu e$	$< 4.7 \times 10^{-12}$	90%	BNL E871	1998
$K_L^0 \to \pi^0 \mu^+ e^-$	$< 7.6 \times 10^{-11}$	90%	KTeV	2008
$K^+ \to \pi^+ \mu^+ e^-$	$< 1.3 \times 10^{-11}$	90%	BNL $E865$	2005
$J/\psi \to \mu e$	$< 1.5 \times 10^{-7}$	90%	BESIII	2013
$J/\psi o au e$	$< 8.3 \times 10^{-6}$	90%	BESII	2004
$J/\psi o au \mu$	$< 2.0 \times 10^{-6}$	90%	BESII	2004
$B^0 \to \mu e$	$< 2.8 \times 10^{-9}$	90%	LHCb	2013
$B^0 \to \tau e$	$< 2.8 \times 10^{-5}$	90%	BaBar	2008
$B^0 o au\mu$	$< 2.2 \times 10^{-5}$	90%	BaBar	2008
$B \to K \mu e^{\ddagger}$	$< 3.8 \times 10^{-8}$	90%	BaBar	2006
$B \to K^* \mu e^{\ddagger}$	$< 5.1 \times 10^{-7}$	90%	BaBar	2006
$B^+ \to K^+ au \mu$	$< 4.8 \times 10^{-5}$	90%	BaBar	2012
$B^+ \to K^+ \tau e$	$< 3.0 \times 10^{-5}$	90%	BaBar	2012
$B_s^0 \to \mu e$	$< 1.1 \times 10^{-8}$	90%	LHCb	2013
$\Upsilon(1s) \to \tau \mu$	$< 6.0 \times 10^{-6}$	95%	CLEO	2008
$Z \to \mu e$	$< 7.5 \times 10^{-7}$	95%	LHC ATLAS	2014
$Z \to \tau e$	$< 9.8 \times 10^{-6}$	95%	LEP OPAL	1995
$Z o au \mu$	$< 1.2 \times 10^{-5}$	95%	LEP DELPHI	1997
$h o e \mu$	$< 3.5 \times 10^{-4}$	95%	LHC CMS	2016
$h o au \mu$	$< 2.5 \times 10^{-3}$	95%	LHC CMS	2017
$h \to \tau e$	$<6.1\times10^{-3}$	95%	LHC CMS	2017

Comparison with SUSY searches at LHC

$$(\delta_{\mathrm{LL}})_{ij} = \frac{(\Delta_{\mathrm{LL}})_{ij}}{\sqrt{(\tilde{m}_L^2)_{ii}(\tilde{m}_L^2)_{jj}}}$$

Calibbi, Signorelli, NC 2017

The MEG(II) location: PSI lab

The Paul Scherrer Institute Continuous muon beam up to few 108 μ+/s

Multi-disciplinary lab:

 fundamental research, cancer therapy, muon and neutron sources

protons from cyclotron
 (D=15m, E_{proton}=590MeV
 I=2.2mA)

MEG-II detector highlights: Liquid Xenon

Liquid Xenon Calorimeter with higher granularity in inner face: => better resolution, better pile-up rejection

Developed UV sensitive MPPC (vacuum UV 12x12mm² SiPM)

Large UV-ext SiPM

MEG-II detector highlights: Drift Chamber

- Single volume drift chamber with 2π coverage
 - 2m long
 - 1300 sense wires
 - stereo angle (6°-8°)
 - low mass
 - high trasparency to TC (double signal efficiency)
- On beam in fall 2018

MEG-II detector highlights: Timing Counter

- High granularity: 2 x 256 BC422 scintillator plates read by SiPM
 - improved timing resolution: 35ps (70ps in MEG)
 - Assembly: completed
 - Installation in COBRA in progress
 - Full test during 2017 pre-engineering run (expected detector performances already confirmed in data)

MEG-II detector highlights: Radiative Decay Counter

New auxiliary detector for background rejection purpose
 => improve sensitivity by 15%

Commissioned during 2017 run

Ready for 2018 pre-engineering run

MPPC S12572-025

~22 cm

BC418 MPPC

S13360-3050PE

MEG-II new trigger and DAQ system

- New version of DRS (Wavedream) custom digitization board integrating both digitization, triggering and some HV
 - ~9000 channels (5GSPS)
 - 256 channels (1crate) tested during 2016 pre-engineering run
 - > 1000 channels available for the upcoming 2017 pre-engineering run
- Final production expected in winter 2018

Photon reconstruction: limiting factors

A tentative design with photon conversion

