Quark jet rates and quark gluon discrimination in multi-jet final states

# Yasuhito Sakaki (KAIST)

### 1807.01421

SUSY2018 @Barcelona, 22-27/7/2018

1



- No clear sign of BSM at the LHC
- Need to examine final states more precisely
- Final states are categorized by inclusive variables
  - → N(jets), N(leptons),  $H_T$ , .....
- Categories containing jets encounter a huge QCD background
- As increasing N(jets), kinematics and MC validation become more complicated
- LHC is jets production machine. We want to examine precisely even such multi-jet final state.

### Multi-jet final state and New physics

- No accurate simulation for the large jet multiplicity background due to the absence of higher-order, huge number of diagrams...
  - ➡ data-driven analysis



### Multi-jet final state and New physics

 Accurate simulation for the large jet multiplicity background does not exist due to the absence of higher-order, huge number of diagrams...



 Jet substructure technique established well as top/W/Z/H tagging tools (2-, 3-prong structure)



• Quark/Gluon discrimination is also available (I-prong structure)

| jet substructure | formed by | R (jet radius) |
|------------------|-----------|----------------|
| top W Z H        | EW        | ~1.0 (fat jet) |
| quark gluon      | QCD       | 0.4            |

• QCD radiation is approximately scale invariant



• Quark/Gluon discrimination works well even with small-R (even with R<0.4)

### Multi-jet final state and Jet substructure

$$\Delta N = \left| N_{\text{quark}}^{\text{signal}} - N_{\text{quark}}^{\text{BKG}} \right|$$

$$\Rightarrow \frac{S}{B} \propto \left( \frac{\epsilon_{\text{quark}}}{\epsilon_{\text{gluon}}} \right)^{\Delta N}, \quad \frac{\epsilon_{\text{quark}}}{\epsilon_{\text{gluon}}} > 1$$
We can apply it  $N_{\text{jets}}$  times

 Large enhancement of S/B for a signal that predicts the number of quark jets which is different from what the QCD background does

Let's see how many quark jets are included in the QCD background.

# Jet rates

- $R_n(t)$ : Probability that an event has *n* jet
- Studied well. Contribute to understanding of QCD



Quark jet rates

•  $R_{n,m}^{i}$ : Probability that *i* emits *n* jets in which *m* quark jets are contained



• Generating functional:

$$\Phi_i(p, t) = \sum_{n=1}^{\infty} \sum_{m=0}^{N(jets)} \frac{N(quark jets)}{\sqrt{n}}$$

$$\Phi_i(p,t) = u \, v_i \, \Delta_i(p,t) + \sum_k \int_{p_0/p}^1 dz \int_{t_0}^t \frac{dt'}{t'} \, \frac{\Delta_i(p,t)}{\Delta_i(p,t')} \, \mathcal{P}_{i \to jk} \, \Phi_j(p,t') \, \Phi_k(zp,t')$$







• evolution equation

$$\begin{split} \Psi_{i}(x,t) &= \Pi_{i}(x,t) + \sum_{k} \int_{x}^{1} \frac{dx'}{x'} \int_{t_{0}}^{t} \frac{dt'}{t'} \frac{\Pi_{i}(x,t)}{\Pi_{i}(x,t')} \\ &\times \frac{f_{k}(x',t)}{f_{i}(x,t)} \,\mathcal{P}_{k \to ij} \,\Psi_{k}(x',t') \,\Phi_{j}((x'-x) \,p_{\text{beam}},t') \end{split}$$

• solutions  

$$\begin{aligned}
\Psi_{q} &= e^{-(1-u)a_{q}\kappa_{q}\lambda} e^{-(1-uv)a_{qq}c_{q}\lambda} e^{S_{g}[f_{q/q}]} \cdots \\
\Psi_{g} &= e^{-(1-u)a_{g}\kappa_{g}\lambda} e^{-(1-uv)a_{q}c_{g}\lambda} e^{S_{g}[f_{g/g}]} \cdots \\
& \uparrow & \uparrow & \uparrow \\ (gluon jet) & (quark jet) subsequent emissions (both)
\end{aligned}$$





$$\begin{split} \Phi_{i_1 i_2 \to f_1 f_2} &= \Psi_{i_1}(x_1, t_{i_1}) \Psi_{i_2}(x_2, t_{i_2}) \Phi_{f_1}(p_{f_1}, t_{f_1}) \Phi_{f_2}(p_{f_2}, t_{f_2}) \\ \hat{p}_T &= p_{f_1} = p_{f_2} = x_1 p_{\text{beam}} = x_2 p_{\text{beam}} \end{split}$$

• A whole generating functional for a matrix element is given by a product of FSR and ISR generating functionals.

$$R_{n,m} = \frac{1}{n!\,m!} \,\frac{\partial^n}{\partial u^n} \,\frac{\partial^m}{\partial v^m} \,\Phi_{i_1\,i_2\to f_1\,f_2} \mid_{u=v=0}$$

# of quark jets



- Increase of gluon jet (double-log), quark jet (single-log)
- QCD multi-jets background is composed of few valence quark jets and many gluon jets
- W/Z/gamma + jets are also available
- It would be useful for MC tuning and development

### Matrix element correction



### How to measure quark jet rates



- Measurable, if the QCD jet substructure is universal (It depends on only pT and rapidity, not # of jet)
- Many applications are conceivable

#### Expected improvement of S/B



 $\hat{p}_T = \Lambda_{
m new}/2$   $\mu_F = \hat{p}_T$ 

### MC analysis

QCD jets  $\overrightarrow{BDT} \sim (1, 0, 0, 0, 0, ...), (1, 1, 0, 0, 0, ...)$ signal  $\overrightarrow{BDT} \sim (1, 1, 1, 1, 1, ...)$ 

• Distance:  $d = \frac{1}{n} || \overrightarrow{BDT} ||$ , (simply, Euclidean norm)





## MC analysis

QCD jets  $\overrightarrow{BDT} \sim (1, 0, 0, 0, 0, ...), (1, 1, 0, 0, 0, ...)$ signal  $\overrightarrow{BDT} \sim (1, 1, 1, 1, 1, ...)$ 

• Distance:  $d = \frac{1}{n} || \overrightarrow{BDT} ||$ , (simply, Euclidean norm)



toy-signal:  $gg/u\bar{u} \rightarrow XX$ ,  $X \rightarrow N$ -quarks



# MC analysis

QCD jets  $\overrightarrow{BDT} \sim (1, 0, 0, 0, 0, ...), (1, 1, 0, 0, 0, ...)$ signal  $\overrightarrow{BDT} \sim (1, 1, 1, 1, 1, ...)$ 

• Distance:  $d = \frac{1}{n} || \overrightarrow{BDT} ||$ , (simply, Euclidean norm)



toy-signal:  $gg/u\bar{u} \rightarrow XX$ ,  $X \rightarrow N$ -quarks

• We can estimate # of background of each bins by data-driven extrapolations



Enhancement of S/B with d



toy-signal:  $gg/u\overline{u} \rightarrow XX$ ,  $X \rightarrow N$ -quarks

After imposing  $H_T$  cut. Fixed at  $\epsilon_S = 0.4$ 



#### 20

# Summary

• Quark/gluon discrimination can be maximally utilized for BSM searches in multi-jet final states.

• Quark and gluon jet fraction in QCD multi-jet background was estimated.

• Introducing a variable for the data-driven analysis in multi-jet final states, we checked the large improvement of S/B using the variable.











### Enhancement of S/B with d



Figure 8:  $M_X$ -dependence on the efficiency ratio. We can see how the ratio changes with increasing the lower bound of  $N_{\text{jets}}$  from 3 to 10, and  $n_X$  from 2 (left-most) to 5 (right-most).



Figure 9: Same as Fig. 8, with the initial states  $u\bar{u}$ .