

COLLIDER PHENOMENOLOGY OF HIDDEN VALLEY MODELS WITH SEMIVISIBLE JETS

Giovanni Grilli di Cortona

based on: H. Beauchesne, E. Bertuzzo, GGdC and Z. Tabrizi arXiv:1712.07160, accepted by JHEP

Motivation

SUSY - 26/07/2018

Spin one mediators are very well studied.

SUSY - 26/07/2018

G.Grilli di Cortona

[Strassler, Zurek '06, Han et al. '07, Strassler '08, Baumgart et al. '09, Seth '11, Chan et al. II, ...]

Spin one mediators are very well studied.

Spin 0 and 1/2 mediators well motivated:

Twin Higgs UV completions [Chacko et al. '05] Folded SUSY [Burdman et al. '06] **Relaxion** [Graham et al. '15]

[Strassler, Zurek '06, Han et al. '07, Strassler '08, Baumgart et al. '09, Seth '11, Chan et al. '11, ..., Cohen et al. '15, '17, ...]

SUSY - 26/07/2018

Stable dark hadrons on collider scales

Dark hadrons leads to MET: SUSY with R-parity searches

SUSY - 26/07/2018

Dark hadrons decaying inside the detector

[CMS-EXO-16-003, CMS-PAS-EXO-17-018, ATLAS-SUSY-2016-08, ATLAS-PUB-2017-014]

Displaced vertices

Dark hadrons decaying inside the detector

[CMS-EXO-16-003, CMS-PAS-EXO-17-018, ATLAS-SUSY-2016-08, ATLAS-PUB-2017-014]

Displaced vertices

SUSY - 26/07/2018

[Schwaller et al. '15, Emerging jets CMS-EXO-18-001]

SUSY - 26/07/2018

SUSY - 26/07/2018

scale $\Lambda_G > \Lambda_{QCD}$;

G.Grilli di Cortona

SUSY - 26/07/2018

I) new confining group G with confinement

Assumptions:

scale $\Lambda_G > \Lambda_{QCD}$;

G.Grilli di Cortona

- I) new confining group G with confinement
- 2) one mediator X (scalar or fermion), charged under G and G_{SM};

Assumptions:

scale $\Lambda_G > \Lambda_{QCD}$;

 $\begin{array}{c}
I \\
I$

E [GeV]

1000 + mx 100 +

- I) new confining group G with confinement
- 2) one mediator X (scalar or fermion), charged under G and G_{SM};
- 3) dark (s)quark n charged only under G.

Explicit breaking operators

G.Grilli di Cortona

Possible signatures: 2 charged leptons, 2 semivisible jets and MET I charged lepton, 2 semivisible jets and more MET 2) 3) 0 charged leptons, 2 semivisible jets and even more MET

Phenomenology

Large r_{inv}: first two generations

SUSY - 26/07/2018

Phenomenology

Small r_{inv}

[CMS-PAS-EXO-16-043], 13 TeV, 2.6 fb⁻¹, requires 2 electrons and > 1 jet

Phenomenology

Small r_{inv}

[Opal collaboration, hep-ex/0305053], 595 pb⁻¹ at (189-208) GeV

-	Mediator	Generation	SU(2) [GeV]	SU(3) [GeV]	SU(4) [GeV]
nv - U		1	104	104	104
	X_L^F	2	104	104	104
		3	103	104	104
		1	103	104	104
	$X_{E^c}^F$	2	104	104	104
		3	103	103	104
		1	93	95	96
	X_L^S	2	98	99	100
		3	91	93	95
		1	93	95	96
	$X_{E^c}^S$	2	98	99	100
		3	90	93	94

SUSY - 26/07/2018

Intermediate r_{inv}

Modify [ATLAS-CONF-2017-039]* and require:

- presence of exactly 2 leptons;
- presence of at least 2 jets; 2)
- 3) minimum values for m_{II} , m_{T2} and MET;

Main background: tt production

* slepton search

Intermediate r_{inv}

pair every lepton with a jet; **I**)

SUSY - 26/07/2018

- pair every lepton with a jet; **I**)
- calculate the invariant mass of each pair; 2)

- pair every lepton with a jet; **I**)
- 2) calculate the invariant mass of each pair;
- 3) select the pairing that minimizes the mass difference;

- pair every lepton with a jet; **I**)
- 2) calculate the invariant mass of each pair;
- 3) select the pairing that minimizes the mass difference;
- add the \vec{p}_T of the two selected jets; 4)

- pair every lepton with a jet; **I**)
- 2) calculate the invariant mass of each pair;
- 3) select the pairing that minimizes the mass difference;
- add the \vec{p}_{T} of the two selected jets; 4)
- define $\Delta \Phi_{MET}^{J}$ the difference between the 5) azimuthal angle of the \vec{p}_T and the direction of the MET;

Intermediate r_{inv}

G.Grilli di Cortona

Conclusions

- Hidden dark sectors arise in many new physics models (Twin Higgs, Folded SUSY, Relaxion, DM) and lead to interesting collider signatures, such as semivisible jets.
- Current collider searches are not optimised to look for semivisible jets, leaving large part of the parameter space unconstrained.
- Our categorisation of Hidden sectors that lead to semivisible jets is a first step to cover the wide possibilities for dark sector physics with such a signature.
- OUTLOOK: missing dedicated studies on EWPT, flavour physics and DM for these classes of Hidden Valley models.