TeV Astroparticle Physics: Recent Highlights from VERITAS

Reshmi Mukherjee for the VERITAS Collaboration

Barnard College, Columbia University 24 July 2018

SUSY 2018 Meeting, 24 July 2018, Barcelona

Outline

- Science topics
- Instrument
- Results
- Future plans

A Rich Variety of Science at E > 100 GeV

- Fundamental physics & cosmology
- Galactic particle acceleration
- Extragalactic particle acceleration

Starbursts, Supernova remnants: shocks, Fermi acceleration, origin of CRs. Binaries: jets (accretionpowered), colliding winds?

relativistic jets in active galaxies

> Pulsars, Pulsar wind nebulae

Starforming regions

Origin of Cosmic Rays? Diffuse, all particle spectrum

Neutral messengers: γ , ν are required to directly observe cosmic accelerators.

Dark Matter, Astroparticle Physics, Cosmology

- Dark matter searches (Classical & ultra faint dwarf spheroidals; PRD 2017)
- **Lorentz Invariance Violation** (Energy dependent speed of light differences; targets GRBs, pulse widths of γ -ray pulsars, AGN variability)
- Primordial Black Holes (could evaporate and produce bursts of VHE γs)
- Extragalactic Background Light $(\gamma_{VHE} + \gamma_{EBL} \rightarrow e^+ + e^-)$
- Intergalactic Magnetic Fields (look for pair cascades/halos; ApJ 2017)
- Direct Cherenkov emission (produced by the primary particle, CR heavy nuclei)
- Electron-positron measurements (Galactic CR studies)
- Multi-Messenger Astrophysics
 - Gravitational Wave EM counterpart searches
 - IceCube neutrino follow ups (BL Lac object TXS 0506+056; ApJ Lett 2018)

Dark Matter, Astroparticle Physics, Cosmology

- Dark matter searches (Classical & ultra faint dwarf spheroidals; PRD 2017)
- Lorentz Invariance Violation (Energy dependent speed of light differences; targets GRBs, pulse widths of γ-ray pulsars, AGN variability)
- Primordial Black Holes (could evaporate and produce bursts of VHE γs)
- Extragalactic Background Light $(\gamma_{VHE} + \gamma_{EBL} \rightarrow e^+ + e^-)$
- Intergalactic Magnetic Fields (look for pair cascades/halos; ApJ 2017)
- Direct Cherenkov emission (produced by the primary particle, CR heavy nuclei)
- Electron-positron measurements (Galactic CR studies)
- Multi-Messenger Astrophysics
 - Gravitational Wave EM counterpart searches
 - IceCube neutrino follow ups (BL Lac object TXS 0506+056; ApJ Lett 2018)

Outline

- Science topics
- Instrument
- Results
- Future plans

Gamma-ray air shower Cherenkov light 300 m

Imaging Air Cherenkov Technique

83 82 81 Right Ascension (Deg)

The VERITAS Instrument

Outline

- Science topics
- Instrument
- Results
- Future plans

I. Indirect Dark Matter Searches with VHE γ rays

- Cold DM composes ~ 27% of the Universe.
- Well-motivated theoretically by extensions of the SM (SUSY, Kaluza-Klein) by weakly-interacting massive particles (WIMPs).
- WIMP annihilation production of gamma-rays
 - Gamma-ray line from direct annihilation
 - Gamma-ray continuum from hadronization
 - Enhanced near DM mass from internal bremmstraung.
 - Sensitivity for 10 GeV < m_{γ} < 100 TeV
- Complementary studies to indirect detection and collider experiments.

$$\frac{d\Phi_{\gamma}}{dE_{\gamma}} = \frac{1}{4\pi} \frac{<\sigma v>}{2m_{\chi}^2} \frac{dN_{\gamma}}{dE_{\gamma}} \int \int \rho^2 ds d\Omega$$

"J-factor" depends on dark matter distribution in object, distance to object, folded with instrument point spread function

VERITAS Dark Matter Targets

- Galactic Center: Nearby source, strong DM candidate, but need to measure large astrophysical γ ray background.
- Dwarf Galaxies: Attractive targets, large mass to light ration (O(10³) times more DM/visible matter), no γ ray background, but DM distribution can be uncertain.
- Unidentified Fermi-LAT sources: Fermi-detected gamma-ray sources, Galactic ones are likely local, however nature and distance unknown.
- Galaxy Clusters: Largest DM concentration in the Universe, but distance is large, γ ray signal weak, sources are extended.

VERITAS: Search for annihilation in individual dwarfs

Dwarf	Zenith Azimuth		Exposure	Energy Range	
	[deg]	[deg]	[hours]	[GeV]	
Segue 1	15-35	100-260	92.0	80 - 50000	
Draco	25-40	320-40	49.8	120 - 70000	
Ursa Minor	35-45	340-30	60.4	160 - 93000	
Boötes 1	15-30	120-249	14.0	100 - 41000	
Willman 1	20-30	340-40	13.6	100 - 43000	

2007 to 2013 Dwarf data: VERITAS PhysRevD.95.082001

- 95% confidence interval on WIMP velocityaveraged cross section with assumption of 100% annihilation into specified channel.
- 216 hours combined with four different dwarf galaxies, "stacked" into a single limit.
- We find no evidence of gamma-ray emission from any individual dwarf nor in the joint analysis.

VERITAS: Dark Matter Limits

- Archambault et al. PhysRevD.95.082001
- Latest results: Combined analysis of several dSPhs.
- IACT results on Dwarfs agree with each other.
- Fermi-LAT competitive low-mass WIMPs large duty cycle and low background.
- Benchmark cross section at $\sim 3 \times 10^{-26}$ cm³s⁻¹ (thermal relic abundance).
- Expect improvements with larger datasets, broader survey, analysis improvements.

VERITAS: Galactic Center Observations

VERITAS ApJ (2016) arXiv:1602.08522v1

- DM halo around the center of our Galaxy.
- GC region is the closes DM target, ~ 8 kpc.
- J Factor better than dSPhs, however region is complicated because of astrophysical sources.
- Many bright sources along Galactic Plane.
- GC is at large zenith angles for VERITAS (> 50 deg).
- This raises energy threshold to
- ~ I TeV, but effective area is large at higher energies.
- Could be competitive for high mass WIMPs.

Future work: Combined Results from Dwarfs

See talk by Javier Rico (IFAE) "Dark matter searches with ground based Cherenkov gamma-ray telescopes" 23 July AstroParticle Session.

- The future: combining all IACTs:
 - Aim: Produce a global DM result combining all dSph observations by HESS, MAGIC and VERITAS.
 - Also exploring including Fermi-LAT and HAWC.
 - Future prospects with Cherenkov Telescope Array (CTA).
 - In the near future, the CTA will explore the region CTA will be sensitive WIMP masses above ~200GeV below the thermal relic cross-section for DM mass in the TeV range.

2. Extragalactic Science: Blazars as probes for cosmology

Blazars as probes for cosmology

- γ -ray opacity measurements, star formation history of the Universe (γ_{TeV} + γ_{EBL} --> e⁺ + e⁻).

- IGMF: Were intergalactic magnetic fields seeded by primordial magnetic fields?

Intergalactic Magnetic Field

- How to produce strong B fields in galaxies/galaxy clusters?
 - Intergalactic magnetic field plausible seed field.
- Produced in early universe?
 - Inflation, phase transitions, recombination.
 - Probe earlier era than CMB?
- Produced astrophysically?
 - Magnetized plasma injected into interstellar medium.

VERITAS: IGMF Constraints from blazars

VERITAS ApJ 2017: arXiv:1701.00372

- Test for extended emission around blazars, none found.
- No deviation from simulated instrument PSF
- Exclude IGMF strengths around ~10⁻¹⁴ G at 95% confidence level.
- The dependence of the width of the simulated angular distribution on the cascade fraction fc for IES 1218+304 (Left Top).

3. VERITAS Multi-Messenger Program

Instruments: Multi-Messenger Astronomy

Point-source sensitivities: γ and ν telescope

After "Dawn of Multi Messenger Astronomy," Santander, 2016

VERITAS follow-up programs for IceCube events

- (I) Archival searches:
 - Searches for VHE emission at "archival" muon neutrino positions that are likely astrophysical ($E_{\nu} \gtrsim 100 \, \text{TeV}$).
 - Correlation studies of neutrino and gamma-ray emission from VHE sources.
- (2) Day-week follow up latency:
 - Observation of neutrino "flares" from known VHE sources.
 - Observation of neutrino multiplets.
- (3) Instantaneous (seconds/minutes):
 - Observation of astrophysical neutrino candidate events.

Neutrino event selection for archival searches

Requirements for VERITAS Observations

- Good angular angular resolution: Muon tracks have O(1°) resolution.
- Observable from VERITAS: Northern events or at low Southern declinations.
- High astrophysical probability: High-energy events have a low atmospheric prob.

Prompt Multi-Messenger follow-up of IC170922A First association of neutrino with γ-rays

- High-energy (>200 TeV) neutrino detected on Sep 22, 2017 (GCN #21916).
- Neutrino positionally-coincident ($\sim 0.1^{\circ}$) with the γ ray blazar TXS 0506+056, observed by Fermi-LAT to
 be flaring during this period (ATel #10791).
- Follow-up observations across the EM spectrum. No VHE detection promptly after the alert.
- MAGIC detected blazar at >100 GeV in observations started 6 days after the neutrino (ATel #10817) and in long term observations (MNRAS 2018).
- VERITAS: No detection in observations 6.5 hours after the event (ATel #10833). TXS 0506+056 detected in 35 hours collected until February 2018 (ApJ Lett 2018).

Credit: IceCube/NSF

ICI70922A: First association of neutrino with γ -rays

- Multi-messenger follow up by 17 observatories.
- Unprecedented time-dependent multi-wavelength observations of TXS 0506+056 before and after IceCube-170922A (Science 2018).

VERITAS: VHE γ -rays from the blazar TXS 0506+056

- VERITAS sky map for the region around TXS 0506+056.
- Data set: 35 hours, Sep 2017 to Feb 2018.

Gamma-ray SED of TXS 0506+056 from Fermi-LAT and VERITAS

VERITAS Collaboration, 2018 ApJ Letters: arXiv:1807.04607

VERITAS: Gravitational Wave Follow-up Strategy

- The VERITAS FoV can cover O(10 deg²) in a single pointing. Can cover the large GW uncertainty regions.
- Localization map for the GW alert is available a few minutes after detection, goes out to follow-up instruments after data quality checks are performed.
- Preparing for O3, the next LIGO run to start end of 2018/beginning of 2019.
- GW170817: No VERITAS data due annual monsoon shutdown.

First systematic IACT follow-up of a GW alert

- GW170104: 50-M_{sun} BBH merger at z = 0.2 detected by LIGO.
- No EM emission expected. Alert was 6.5 hours old when received. Good visibility of the core region of the event.

- The VERITAS FoV can cover O(10 deg²) in a single pointing. Can cover the large GW uncertainty regions. Preliminary results circulated as GCN circular #21153
- Results affected by weather.

Conclusions and Outlook

- VERITAS has an active
 Astroparticle physics and offers significant complementarity.
- Astrophysical neutrinos:
 VERITAS can identify potential counterparts.
- Gravitational wave follow-ups: VERITAS is ready to carry out follow-up observations of GW events that are potentially EM.

VERITAS can provide northern coverage with competitive sensitivity until the start of CTA operations and extending to its first phase. **The VERITAS Collaboration & Friends – 10 Year**

Celebration

- Argonne, USA
- Barnard, USA
- Columbia, USA
- CIT, Ireland
- GeorgiaTech, USA
- Iowa State, USA
- McGill, Canada
- NUI, Ireland

- UDelaware, USA
- Uiowa, USA
- Uminnesota, USA
- **DESY, Germany**
- Potsdam, Germany
- UAlabama, USA

Extras

VERITAS: Combined Results from Dwarfs

- 95% confidence interval on WIMP velocity-averaged cross section with assumption of 100% annihilation into specified channel.
- 216 hours combined with four different dwarf galaxies, "stacked" into a single limit.
- We find no evidence of gamma-ray emission from any individual dwarfs nor in the joint analysis.

Gamma Rays from Dark Matter

- Cold Dark Matter (DM) composes 27% of the universe
- Composition of DM still not understood
- Extension of SM that include weakly-interacting massive particles (WIMPs)
- Majorana particles that self-annihilate or decay to SM particles
- (Nearly) all roads lead to gamma rays!
- Complementary studies to Indirect detection and collider experiments

	Annihilation Channel	Secondary Processes	Signals	Notes
<i>* /_</i>	$\chi\chi \rightarrow gq, gg$	p,p, r*, x"	p, e, a(7)	
000	$\chi \chi \rightarrow W^+W^-$	$W^{\pm} \rightarrow l^{\pm}v_{l}, W^{\pm} \rightarrow ud \rightarrow$	p, c, a 7	
		π [±] , π ⁰		
Align	$\chi \chi \rightarrow Z^0 Z^0$	$Z^0 \rightarrow U$, $\nu \nu$, $qq \rightarrow plons$	$p_1 = (y_1) v$	
	$\chi\chi \rightarrow \tau^*$	$\tau^+ \rightarrow \nu_* e^+ \nu_*, \ \tau \rightarrow e_+ W^\pm \rightarrow p, p, p, pions$	p, 6, 7, F	
	$\chi \chi \rightarrow \mu^{+}\mu^{-}$		40	Rapid onergy last of
			_	as in sun before
1,00				decay results in
\ \\				sub-threshold as
	$\chi\chi \rightarrow \gamma\gamma$	-a.	0	Loop suppressed
	$\chi\chi \to Z^0\gamma$	Z ⁰ decay	Υ	Loop suppressed
3/ 2 \ .	$\chi\chi \rightarrow e^+e^-$		a(y)	Helicity suppressed
7 1	$\chi\chi \rightarrow \nu \nu$		81	Helicity suppressed
				(important for
~ ×				non-Majorana
X.		(e±	WIMPs1) New coaler field with
الأسار	$\chi \chi \rightarrow \phi \bar{\phi}$	φ → e+e-	6-	
1. 1		internal/final state b	nemme	m _x < m _q to explain
		inverse Compton		large electron signal and avoid
7.5		inverse Compton	70	overproduction of
· /~				
f^{rr}				$P_1 \Upsilon$

Gamma-ray flux from DM:

$$\frac{dF(E,\hat{\mathbf{n}})}{dEd\Omega} = \int d\ell \, \ell^2 \, r(\ell \hat{\mathbf{n}}) \frac{dN_{\gamma}(E)}{dE} \frac{1}{4\pi\ell^2}$$

$$= \frac{\langle \sigma v \rangle}{8\pi M^2} \frac{dN_{\gamma}(E)}{dE} \int d\ell \, \rho^2(\ell \hat{\mathbf{n}})$$
Particle Physics
(J) Factor

Intergalactic Magnetic Field

- How to produce strong B fields in galaxies/galaxy clusters?
 - Intergalactic magnetic field plausible seed field.
- Produced in early universe?
 - Inflation, phase transitions, recombination.
 - Probe earlier era than CMB?
- Produced astrophysically?
 - Magnetized plasma injected into interstellar medium.

Taylor, Vovk, Neronov 2011, arXiv:1101.0932

The VERITAS Collaboration

A. U. Abeysekara, S. Archambault, A. Archer, W. Benbow, R. Bird, R. Brose, M. Buchovecky, J. L. Christiansen, M. P. Connolly, W. Cui, M. K. Daniel, A. Falcone, Q. Feng, M. Fernandez-Alonso, J. P. Finley, H. Fleischhack, L. Fortson, A. Furniss, G. H. Gillanders, T. Hasan, M. Hütten, D. Hanna, O. Hervet, J. Holder, G. Hughes, T. B. Humensky, C. A. Johnson, P. Kaaret, P. Kar, M. Kertzman, D. Kieda, M. Krause, F. Krennrich, S. Kumar, M. J. Lang, G. Maier, S. McArthur, P. Moriarty, R. Mukherjee, D. Nieto, S. O'Brien, R. A. Ong, A. N. Otte, D. Pandel, N. Park, M. Pohl, A. Popkow, E. Pueschel, J. Quinn, K. Ragan, P.T. Reynolds, E. Roache, A. C. Rovero, I. Sadeh, M. Santander, S. Schlenstedt, G. H. Sembroski, K. Shahinyan, J. Tyler, S. P. Wakely, A. Weinstein, R. M. Wells, P. Wilcox, A. Wilhelm, D. A. Williams, T. J Williamson, B. Zitzer