Primordial Black Holes

from the

QCD axion

Fabrizio Rompineve

IFAE Barcelona

based on: Francesc Ferrer, Eduard Massó, Giuliano Panico, Oriol Pujolàs and FR, arXiv:1807.01707

SUSY 2018, Barcelona, July 26, 2018

PBHs as DM

Interest: alternative, traditionally astrophysical, DM candidate.

Taken from: Carr et al., arXiv:1607.06077

Interest in heavy BHs

- We (can) hear them! (LIGO-LISA-etc)
- We "see" them! (Super-Massive BHs at the centre of galaxies, maybe primordial?)
- Small fraction of very heavy ($\gtrsim 10^5 M_\odot$) PBHs: helps in generation of cosmological structures and may alleviate problems of CDM on sub-galactic scales! (Clesse et al. ´15, Carr and Silk ´18).

- Most studied formation mechanism: gravitational collapse of density fluctuations from Inflation.
- Alternative formation mechanism: collapse of topological defects in the early Universe.
- Examples: strings (Vilenkin '81, ...), domain walls (Khlopov

'05,..., Deng et al. '17).

- Most studied formation mechanism: gravitational collapse of density fluctuations from Inflation.
- Alternative formation mechanism: collapse of topological defects in the early Universe.
- Examples: strings (Vilenkin '81, ...), domain walls (Khlopov

'05,..., Deng et al. '17).

- Most studied formation mechanism: gravitational collapse of density fluctuations from Inflation.
- Alternative formation mechanism: collapse of topological defects in the early Universe.
- Examples: strings (Vilenkin '81, ...), domain walls (Khlopov

'05,..., Deng et al. '17).

Collapse driven by tension!

PBHs from domain walls (DWs)

DW collapses once

$$H_{\star}^{-1} \equiv H^{-1}(T_{\star}) \sim R_{\star}$$

PBHs from domain walls (DWs)

DW collapses once

$$H_{\star}^{-1} \equiv H^{-1}(T_{\star}) \sim R_{\star}$$

Collapsing mass

$$M_{\star} \simeq 4\pi\sigma H_{\star}^{-2} + \frac{4}{3}\pi\Delta V H_{\star}^{-3}$$

PBHs from domain walls (DWs)

DW collapses once

$$H_{\star}^{-1} \equiv H^{-1}(T_{\star}) \sim R_{\star}$$

Collapsing mass

$$M_{\star} \simeq 4\pi\sigma H_{\star}^{-2} + \frac{4}{3}\pi\Delta V H_{\star}^{-3}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\sim T_{\star}^{-4} \qquad \sim T_{\star}^{-6}$$

Pictures by P. Baratella

$$p \equiv \frac{R_S}{R_{\star}} \sim \frac{2G_N M_{\star}}{H_{\star}^{-1}}$$

$$\sim \frac{\sigma H_{\star}^{-1}}{M_p^2} + \frac{\Delta V H_{\star}^{-2}}{3M_p^2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\sim T_{\star}^{-2} \qquad \sim T_{\star}^{-4}$$

Pictures by P. Baratella

Pictures by P. Baratella

Pictures by P. Baratella

$$p \equiv \frac{R_S}{R_{\star}} \sim \frac{2G_N M_{\star}}{H_{\star}^{-1}}$$

$$\sim \frac{\sigma H_{\star}^{-1}}{M_p^2} + \frac{\Delta V H_{\star}^{-2}}{3M_p^2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\sim T_{\star}^{-2} \qquad \sim T_{\star}^{-4}$$

$$p \equiv \frac{R_S}{R_{\star}} \sim \frac{2G_N M_{\star}}{H_{\star}^{-1}}$$

$$\sim \frac{\sigma H_{\star}^{-1}}{M_p^2} + \frac{\Delta V H_{\star}^{-2}}{3M_p^2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\sim T_{\star}^{-2} \qquad \sim T_{\star}^{-4}$$

Pictures by P. Baratella

PBHs more likely to form (p~0.1) if collapse occurs late!

- New here: PBH formation from axionic hybrid stringdomain wall network.
- Framework: QCD axion with domain wall number >1 (DFSZ and generalisations of KSVZ, see Vachaspati '17 for =1 case).

$$\mathcal{L}_a \supset -N_{DW} \frac{a(t, \mathbf{x})}{v} \int d^3x G_{\mu\nu} \tilde{G}^{\mu\nu}$$

- Mechanism is independent of inflation!
- DM made of axions and heavy PBHs!

- $N_{\rm DW}=1$: network is **unstable**, rapidly decays.
- $N_{DW} > 1$: network is stable, DW problem!

- $N_{\rm DW}=1$: network is **unstable**, rapidly decays.
- $N_{DW} > 1$: network is stable, DW problem!

- $N_{\rm DW}=1$: network is **unstable**, rapidly decays.
- $N_{DW} > 1$: network is stable, DW problem!

- $N_{\rm DW}=1$: network is **unstable**, rapidly decays.
- $N_{DW} > 1$: network is stable, DW problem!

Taken from: Kawasaki et al. 14, arXiv: 1412.0789

- $N_{\rm DW}=1$: network is **unstable**, rapidly decays.
- $N_{DW} > 1$: network is stable, DW problem!

Taken from: Kawasaki et al. 14, arXiv: 1412.0789

- $N_{\rm DW}=1$: network is **unstable**, rapidly decays.
- $N_{DW} > 1$: network is stable, DW problem!

Taken from: Kawasaki et al. 14, arXiv: 1412.0789

Axion DM with $N_{DW} > 1$

Axion DM with $N_{DW} > 1$

PBHs from closed walls in the network collapsing at T₂

PBHs from closed walls in the network collapsing at T₂

Late collapses

- However: still around 10% of the network leftover at T₂!
- For walls collapsing after T₂, volume contribution dominates:

$$p \sim T_{\star}^{-4}, \ M_{\star} \sim T_{\star}^{-6}$$

Need only one order of magnitude in T to reach

$$p \gtrsim 0.1$$

Collapse after T₂

Collapse after T₂

PBH fraction

Reasonable expectation:

- N takes into account asphericities, ang. momentum etc. For large p, expect $N \sim O(1)$.
- After T₂, network is dominated by bias term

$$\rho_{\rm nw} = P_{\rm nw} \Lambda_B^4$$

Surviving

fraction of the

network

PBH fraction

- For detailed estimate: need numerical simulations!
- For simplicity, assume

$$P_{nw} \sim \left(\frac{T_2}{T_{\star}}\right)^{-\alpha}$$

- Simulations of Kawasaki et al. '14 suggest $\alpha \approx 7$.
- For N=2, f peaks at $\sim 10^{-6}$!

Conclusions

- QCD axion models with N_{DW} > 1 are characterised by long-lived string-domain walls network.
- Under reasonable expectations, $M \sim 10^4 10^7 M_{\odot}$ PBHs can be obtained from the collapse of closed structures in the **network**.
- Small fraction, $f \gtrsim 10^{-6}$. DM dominantly made of axion quanta.
- Preferred region of axion parameter space

To be explored at: IAXO, TASTE, ARIADNE, ALPSII, ...

$$F \lesssim 10^9 \text{ GeV} \Rightarrow m \gtrsim \text{ meV}$$

Outlook: bias term from dark QCD? Details of collapse?

Backup

Axion mass

Parameters determined from Dilute Instanton Gas Approximation (High T, Wantz et al. '10) and Lattice (Borsanyi et al. '16)

 $n \approx 7$, $T_0 \approx 100 \text{ MeV}$

see Bonati et al. 16 for deviations

Bias term

- $N_{DW} > 1$: $\rho_{nw} \sim a^{-2} \longrightarrow$ domain wall problem!
- Need to lift degeneracy of vacua

Add:
$$V_B = \Lambda_B^4 \left[1 - \cos\left(\frac{a}{v} + \delta\right) \right]$$

Bias from dark QCD

- Consider dark QCD without light quarks confining below T₂ and coupled to the QCD axion.
- Induce temperature-dependent bias term.

$$\Delta V(T) \simeq m_B(T)^2 F^2$$

- Increases with decreasing temperature!
- Large p achieved faster! Possibly larger fraction of PBHs with smaller masses!

Axion relic abundance

$$\Omega_{\text{mis}}h^2 \simeq B_n \sqrt{c_0} c_T^{-\frac{1}{4+n}} \left(\frac{F}{10^9 \text{ GeV}} \right)^{\frac{6+n}{4+n}} \left(\frac{g_{\text{eff}}(T_1)}{80} \right)^{-\frac{6+n}{2(4+n)}} \left(\frac{\Lambda_{QCD}}{400 \text{ MeV}} \right)^{\frac{6+n}{4+n}}$$

$$\Omega_{\text{strings}} h^2 \simeq C_n \left(\frac{F}{10^9 \text{ GeV}} \right)^{\frac{6+n}{4+n}} \left(\frac{g_{\text{eff}}(T_1)}{80} \right)^{-\frac{2+n}{2(4+n)}} \left(\frac{\Lambda_{QCD}}{400 \text{ MeV}} \right)^{-\frac{2}{2(4+n)}}$$

$$\Omega_{\rm nw} h^2 \simeq 0.14 \times \left(\frac{F}{10^9 \text{ GeV}}\right) \left(\frac{\Lambda_{QCD}}{400 \text{ MeV}}\right)^2 \left(\frac{g_{\rm eff}(T_2)}{10.75}\right)^{-1/4} \left(\frac{10 \text{ MeV}}{T_2}\right)$$