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PBHS as DM

* Interest: alternative, traditionally astrophysical, DM

candidate.
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Interest In heavy BHS

 We (can) hear them! (LIGO-LISA-etc)

e We “see” them! (Super-Massive BHs at the centre
of galaxies, maybe primordial?)

 Small fraction of very heavy ( = 10° M, ) PBHs:
helps in generation of cosmological structures and
may alleviate problems of CDM on sub-galactic
scales! (Clesse et al. 15, Carr and Silk "18).




Focus of this talk

* Most studied formation mechanism: gravitational
collapse of density tfluctuations from Inflation.

* Alternative formation mechanism: collapse of
topological defects in the early Universe.

- Examples: strings (vienkin ‘81, ...), domain walls (khiopov
05,..., Deng et al. "17).
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Collapse driven by tension!
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PBHs from domain walls (DWSs)

* DW collapses once
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* Collapsing mass
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PBHs more likely to form (p~0.1) if collapse
occurs late!



Focus of this talk

 New here: PBH formation from axionic hybrid string-
domain wall network.

* Framework: QCD axion with domain wall number >1 (DFSZ
and generalisations of KSVZ, see vachaspati 17 for =1 case).

a(t,x)

L, DO —Npw /dSZIjGW/éW/

- Mechanism is independent of inflation!

- DM made of axions and heavy PBHS!
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Defects of the QCD axion

TRH TPQ — U Ty ~ GeV : 3H(T1) — m(Tl)
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Defects of the QCD axion

TRH TPQ — U T ~ GeV : 3H(T1) = m(Tl)
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Defects of the QCD axion

TRH TPQ = v Ty ~ GeV : 3H(T1) — m(Tl) T2
| Network: |
SN, each string attached
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TRH T],?Q = U

Defects of the QCD axion

T1 ~ GeV : 3H(T1) = m(Tl)

15
yf p
/ ///{,

i
S
—~— \\

it

String-wall
Network




QCD axion with Npw > 1

e Npw =1 :network is unstable, rapidly decays.

e Npw > 1 :network is stable, DW problem!



QCD axion with Npw > 1

e Npw =1 : network is unstable, rapidly decays.

e Npw > 1 :network is stable, DW problem!

Way out:
add bias term

t A%

—alv
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e Npw =1 : network is unstable, rapidly decays.

e Npw > 1 :network is stable, DW problem!

Way out:
add bias term
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Network starts
decaying when balance ™
between tension and
pressure Is achieved!
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Axion DM with Npw > 1
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Axion DM with Npw > 1

Largest bias
offset to keep
CP conserving
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PBHs from closed walls in the network
collapsing at 1,
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PBHs from closed walls in the network
collapsing at 1,
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|_ate collapses

e However: still around 10% of the network leftover
at 1o

* For walls collapsing after T2, volume contribution
dominates:

p ~ T*_47 M, ~ T*_G

 Need only one order of magnitude in T to reach

p = 0.1



Collapse after T»
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Example
INn the lower
corner of
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Collapse after T»
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PBH fraction

* Reasonable expectation:

Collapse of f ~ pN < Prw (T*) Decay of the
single ~ whole network

structure

o N takes into account asphericities, ang. momentum
etc. For large p, expect N ~ O(1).

o After T2, network is dominated by bias term

4 Surviving
Pnw — inAB fraction of the
-~ network




PBH fraction

* For detailed estimate: need numerical simulations!

* For simplicity, assume
5\ °
in ~\ A
()

e Simulations of Kawasaki et al. “14 suggest a ~ 7.

e For N=2, f peaks at ~ 10~ °



Conclusions

« QCD axion models with Npw > 1 are characterised by
long-lived string-domain walls network.

« Under reasonable expectations, M ~ 10* — 10" M PBHs
can be obtained from the collapse of closed structures in
the network.

« Small fraction, 7 > 10~° . DM dominantly made of axion

quanta.
To be explored at:

| | IAXO, TASTE,
» Preferred region of axion parameter space  aRjaDNE, ALPSII, ...

F <10” GeV = m > meV .

Outlook: bias term from dark QCD? Details of collapse?



Backup



AXION Mass

m(T)[meV]
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Parameters determined from Dilute Instanton Gas
Approximation (ngh T, wantz et aI.’10) and Lattice (Borsanyi etal.”16 )

na7 Ty~ 100 MeV

see Bonati et al.”16 for deviations



Blas term

—2

* Npw >1: Pnw ~ @ ~—— domain wall problem!

e Need to lift degeneracy of vacua

V(a)

AV

& Add: Vs = A% [1 — COS (ﬁ + 5)}

U
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Bias from dark QCD

Consider dark QCD without light quarks confining
below T2 and coupled to the QCD axion.

Induce temperature-dependent bias term.
AV (T) ~ mp(T)*F~
Increases with decreasing temperature!

Large p achieved taster! Possibly larger fraction of
PBHs with smaller masses!



AXxion relic abundance
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