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Motivation

Directly, locally measured (low z) value of the Hubble constant

73.24± 1.74
km

s Mpc Riess et al. 2016

is more than 3σ bigger than the Hubble constant inferred from the
CMB measurements and the standard ΛCDM model (high z)

67.8± 0.9
km

s Mpc Planck Collaboration 2016

Such discrepancy may be explained by additional contribution to
energy density from dark radiation (DR)

ρR = ργ + ρν + ρDR =

[
1 +

(
NSM

eff + ∆Neff

) 7

8

(
4

11

)4/3
]
ργ

Neff = NSM
eff + ∆Neff - e�ective number of neutrinos NSM

eff ≈ 3.045

Salas Pastor 2016
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Motivation

The present bounds on Neff are not very tight

and depend on the set of experimental results used in the analysis

2.99± 0.20 3.15± 0.23 3.29+0.11
−0.17

PlanckTT + lowP + BAO Planck TT, TE, EE+lowP ...+H0+SZ+lensing

Planck Collaboration 2016 Feng et al. 2017

Future experiments will determine Neff more precisely

Precision better than 0.03 expected from the CMB-S4 experiment
CMB-S4 Collaboration 2016

In order to test models of DR we will need theoretical predictions
with comparable accuracy

One of the e�ects to be taken into account comes from the
quantum statistics of all particles involved in DR freeze-out process
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Boltzmann equation

Boltzmann equation in FRW metric:

E(∂t − pH∂p)f(p, t) = CE(p, t) + CI(p, t)

Massless DR particle χ annihilating into SM particles: χχ̄→ NN̄
Distribution functions:

fχ =
(
eE/T+z±1

)−1

fN =
(
eEN/T±1

)−1

z � chemical pseudopotential describes decoupling from equilibrium
Bernstein Brown Feinberg 1992

Dolgov Kainulainen 1993

Evolution of z given by integro-di�erential equation:

dz

dx
= −

x

J2(z, x)

[
1

3

g′∗s(x)

g∗s(x)
J3(z, x)

+

√
45

256π11/2

MPl

m

sinh z

g
√
g∗(x)

(
1−

x

3

g′∗s(x)

g∗s(x)

)
S̃I(z, x)

]
(x ≡ mN/T )
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Boltzmann equation

Jn(z, x) =

∫ ∞
0

dy yn
exy

(exy+z±1)2

S̃I(z, x) = 2π

∫
DΦ

∑
spins

|Mχχ̄→NN̄ |
2

If Mχχ̄→NN̄ depends only on s then DΦ may be reduced to a 2-dim. integral
(which in general case is 5-dim. and much more complicated)

DΦ =
1

x4

∫ ∞
2x

dp

∫ √p2−4x2

0
dq

1

(ep+2z − 1)(1− e−p)
·

· ln
[

cosh
(

1
2
(p+ q) + z

)
±1

cosh
(

1
2
(p− q) + z

)
±1

]
ln

[
cosh

(
1
2

(
p+ qV

))
±1

cosh
(

1
2

(
p− qV

))
±1

]

where: V =
√

1− 4x2

p2−q2 s = p2−q2
x2 m2

N

From z(x) we obtain nχ(x) = g
m3

2π2

∫ ∞
0

y2dy

exy+z±1
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Boltzmann equation � approximations

Y = e−zYeq Yeq = g
45

2π4

ζ±

g∗s
ζ± ≡ ζ(3)

{
3/4 FD

1 BE

Y ′(x) = −
√
π

45

g∗s(x)√
g∗(x)

MPlm

x2

(
Y 2(x)− Y 2

eq(x)
)
〈σv〉

1

ζ±

pure MB: ±1→ 0, ±1→ 0 everywhere (⇒ ζ± → 1)

fractional fBE/fFD: ζ± in Yeq, 〈σv〉 = 〈σv〉MB

partial pBE/pFD: ζ± in Yeq, 〈σv〉 = 〈σv〉p

〈σv〉MB =
1

512π

x5

m5

∫ ∞
4m2

ds

√
1−

4m2

s

∑
spins

|M(s)|2
√
sK1

(
x
√
s

m

)
〈σv〉p similar to 〈σv〉BM with the substitution

√
sK1

(
x
√
s

m

)
→
∫ ∞
√
s

dE+

(ζ±)2

e−
x

2m
E+

sinh
(
x

2m
E+

) ln

 fh
(
x

4m

(
E+ +

√
E2

+ − s
))

fh
(
x

4m

(
E+ −

√
E2

+ − s
))


fh = sinh/cosh for BE/FD statistics of DR particles

statistics of SM particles N is ignored
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Weinberg's Higgs portal model

Standard Model
+ scalar φ and Dirac fermion ψ charged under global U(1)dark:
Qdark(ψ) = 1, Qdark(φ) = 2 Weinberg 2013

Lscalar = (DµH)
†

(DµH) + µ2
HH

†H − λH(H†H)2

+∂µφ
∗∂µφ+ µ2

φ(φ∗φ)2 − λφ(φ∗φ)2 − κ(H†H)(φ∗φ)

Spontaneous breaking of U(1)dark gives:

- massless Goldstone boson σ � DR particle

- massive scalar which mixes with the neutral component of the
doublet H giving two mass eigenstates: h and ρ

- two massive Majorana fermions - lighter plays the role of DM

Imposing two constraints, vH = 246 GeV and mh = 125 GeV, on
Lscalar we are left with 3 independent parameters: κ, λφ, mρ
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Weinberg's Higgs portal model

It is often assumed that Goldstone bosons σ
�go out of equilibrium while kT is still above the mass of muons but

below the mass of all other particles�

and that this leads to ∆Neff = 4
7

(
43
57

)4/3 ≈ 0.39

Problems:

- 105 MeV ≈ mµ � kT � mπ ≈ 135 MeV

- how the results change if pions are taken into account?

In addition, it is interesting to check:

- what is the result of decoupling at di�erent temperatures

- how di�erent approximations (used in the literature) change
the results with respect to those obtained with the full
inclusion of quantum statistics of involved particles
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Instantaneous freeze-out approximation

Instantaneous freeze-out approximation: Y∞ = Y eq(xf )
where the freeze-out temperature, xf , is de�ned by the condition η(xf ) = 1

η(x) = Γ
H

∣∣∣
x

=
n〈σv〉
H

∣∣∣
x

Processes σσ ↔ µ+µ−, ππ are dominated by ρ exchange which in the narrow
resonance approximation may be described by

∑
spins

|M |2 → 2πκ2m3
ρ δ(s−m2

ρ)
m2
µ±(m2

ρ − 4m2
µ±) + 1

27
(m2

ρ + 11
2
m2
π)2

Γρ
[
(m2

ρ −m2
h)2 + Γ2

hm
2
h

]
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E�ects of statistics

Statistics in�uences the phase-space integrals:

DΦχN ≈ DΦMB · tanh±1±1
(
mρx

4mN

)
DΦp ≈ DΦMB · (ζ±)−1 tanh±1

(
mρx

4mN

)
DΦf ≈ DΦMB · ζ±

In Weinberg's Higgs portal model

DΦσµ ≈ DΦMB

DΦσπ ≈ DΦMB · coth
(
mρx

4mπ

)
coth

(
mρx

4mπ

)
- substantial e�ect for small mρx � 4mπ

Statistics (of DR particles) enters also via

Jn(z, x) ≡
∫ ∞

0
dy yn

exy

(exy+z±1)2
nχ(x) = g

m3

2π2

∫ ∞
0

y2dy

exy+z±1
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Numerical examples
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Numerical scan
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Approximate methods with only limited inclusion of statistics e�ects:

- usually overestimate ∆Neff

- underestimate ∆Neff for small κ and mρ

Inclusion of pions in the analysis is very important

ILC sensitive to big part of the parametr space with ∆Neff ≈ 0.39
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Conclusions

Dark Radiation may explain the di�erence between values of
H0 obtained from direct observations and inferred from CMB

We compared a few methods of calculating ∆Neff

statistics of all involved particles (DR and their annihilation
products) is important
limited inclusion of statistics typically overestimates
(underestimates) ∆Neff for bosonic (fermionic) DR
instantaneous freeze-out approximation overestimates ∆Neff

(and sometimes fails at all)

Weinberg's Higgs portal model

limited inclusion of statistics may change ∆Neff by ∼ 0.05
e�ects from pions very important
parts of parameter space giving ∆Neff ≈ 0.4 within reach of ILC

Boltzmann equation with full statistics should be used to
compare models of DR with data from future experiments -
like CMB-S4
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Backup
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