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* The naturalness problem of EW scale and Higgs boson mass
has been the most important issue for last four decades.

* The MSSM has been the most promising BSM candidate.

* No evidence of BSM has been observed yet at LHC.
— Theoretical puzzles raised in the SM still remain UNsolved.

* A barometer of the solution to the naturalness problem is
the stop mass.
The stop mass bound has been already > 1 TeV.
(The gluino mass bound has exceeded > 2 TeV.)
— They start threatening the traditional status of SUSY as a
solution to the naturalness problem of the EW phase transition.




* ATLAS and CMS have discovered the SM(-like) Higgs
with 125 GeV mass, which is too heavy as a SUSY Higgs.

* According to the recent analyses, 10-20 TeV stop mass
is necessary for the 125 GeV Higgs mass
(without a large stop mixing).
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* ATLAS and CMS have discovered the SM(-like) Higgs
with 125 GeV mass, which is too heavy as a SUSY Higgs.

* According to the recent analyses, 10-20 TeV stop mass
is necessary for the 125 GeV Higgs mass
(without a large stop mixing).
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* Recently some new ideas (without SUSY) have been suggested
to relax the gauge hierarchy problem.

* For UV completion, however, embedding them in SUSY also
have been discussed.




* Recently some new ideas (without SUSY) have been suggested
to relax the gauge hierarchy problem.

* For UV completion, however, embedding them in SUSY also
have been discussed.

We will attempt to address
the (little) hierarchy problem
in the SUSY framework.




Little Hierarchy Problem
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Why is M, [=(g,%+8,%)(v,2+V,4°)/2] so small
compared to the soft masses ?

[V +Vg® =<[H|?>= (174 GeV)]




Problems in SUSY models

Gravity Mediated SUSY Breaking mech.
y and By terms are O.K.

But Flavor and CP problems would arise.

Gauge Mediated SUSY Breaking mech.

Flavor and CP problems are absent.
But p and By problems would be serious.
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Model

W = (4, X + A, +1) huhd + M XY + (k/2) Y$2
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Model
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FLAT direction (= modulus-like)
in SUSY limit, with h, = h=Y=0

where |HA




Model

W = (4, X + A, +1) huhd + M XY + (k/2) Y$2
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where |H|? =



Effective mu and Bmu

Heff = /\1<Xr> + /\2<O> + IL.

Bﬂ-eﬂ = (MU* + Agh*<0*>) <Y*> T A1(1.1<X> + Ai_),(l.2<(ﬁ> T Bﬂ




Extreme Conditions

extreme conditions for X, Y, and ¢
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Solutions of Extrm. Condi.
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Extrm. Condi. for ®

The extremum condition for 1 (= k¢/M)
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Extrm. Condi. for &

The extremum condition for 1 (= k¢/M )
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Extrm. Condi. for ®
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Dynamical Relaxation
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Dynamical Relaxation
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Why is M, [=(g,%+8,%)(v,2+V,4°)/2] so small
compared to the soft masses ?

[v2+v2=<|H|?>=(174 GeV?]



Little Hierarchy Problem

[t is because m,, My are so small
compared to the MSSM soft masses.

Why is M, [=(g,%+&,9)V,%+v,°)/ 2] so small
compared to the soft masses ?

[v2+v2=<|H|2>= (174 GeV)?]
u d



For small enough m,,?

Introduce Gauge Med. SUSY Breaking
as well as Gravity Med. SUSY breaking

Gauge Med. — Heavy MSSM soft masses
avoiding Exp. Bounds and SUSY flavor and CP problems

Gravity Med. — Small MSSM singlet masses and By term




For small enough m,,?

Introduce Gauge Med SUSY Breaking
as well = : < preaking

o Messenger Scale of the Gauge Med.
needs to be LOW enough. ems
* A, needstobe SMALL enough.




Focus Point
(A,=0.7 > A,=0.02)
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RG evolutions of m,? under various trial m,?s.

the messenger scale = 500 TeV (L) and 12 TeV (R).
In both cases, the stop mass scales = 10 TeV.




Focus Point

Case I tan 3 =10 Case 11 tan 3 =40
A2 =5.1074 |2 = (10 TeV)2 || A2 = 8- 1073 |2 = (20 TeV)?
)F 05 | Ay=15TeV || A =05 | Ay =25TeV
ﬁmg 19.1 ﬁmﬁ 79.6
‘&Ml/z 83.2 ﬁMl/z 28.6
A 59.7 A2 56.5

2 2
AcM 37.1 A 153.5
Ay, 6.0 AV 21.3




Focus Point

Case 1 tan = 10 Case 11 tan § = 40
As=5-10"%m? = (10 TeV ) A5 =8-107%\m? = ()(]Te\ )
M —05 | A= 15TeV M — (08 | A —95TeV

Foauge /(16m*Ay) = GM =5.1TeV () and 10.5TeV (Il) , A

Fgauge < Fgravity ’
My 5 = Fyany /(V3 Mp) = mo= 30.4GeV (1) and 124.7GeV (Il),

We set My,,=125m, (I) and 54 m, (Il) at the GUT scale. 1/




Focus Point

Case | tan f = 10 Case 11 tan § = 40
A2 =5.1074 |2 = (10 TeV)2 || A2 = 8- 1073 |2 = (20 TeV)?
\2 — (5 Nar — 15TV 2 — (5 Aas — 98 TeV

(Mg My, Mg) = (12, 5, 3) TeV (1) and (22, 9, 5) TeV (I)
Ui = 2.5 TeV (1) and 2.3 TeV (ll)

The SUSY particles’ masses of the 1st and 2"d generations
are much heavier.




Mass Matrix (fermion)
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Mass Matrix (fermion)

( kY H(_IEIJ 0 Aghu )\Q}E-d_\
ko 0 M () 0

0 M 0 |MNh, Mhy
Xohy, 0 Ayh, ) —8 =
\ )\Qh-d_ 0 )\1}?.
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The smallest mass E. value

r(Y) | :
1412 ~ g A (0" —a’) 1= sub GeV or lighter,

The lightest E. state plays the
role of OM.
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Mass Matrix (scalar)
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Mass Matrix (scalar)

O; -diag.(mj, m3, M3)-O;

vields a symmetric matrix M7, (= M3;) with the following elements:

M3, = M3 =5 + m3 €] +m7,

M3, = M3 =5 sinf + m3 =1 cost) —m7 ey,

M3, = M3 =5 cos — m35 £ sinf) — m5 e,
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M3, ~ AM3, sin“0 + mg {AM3, sin®0 + Am3, } Ef
M33 ~= AJ[22 cos’f + ?322 {Aﬂfp cos’f + Arnzl} 62

—AJ[ 30 SIN26 ejeo,




Mass Matrix (scalar)

O; -diag.(mj, m3, M3)-O;
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Mfg ~ N3 o cost/ — 5 €1 smb — 1y €o,

M3y =~ AM3, (1 — &) sind cosb,

5o ~ AM3, sin“f + mg {L\J[‘) sin®6 + Amgl} El.

M3, = AMZ, cos®l + m3 — {AJ[B} cos 6l + Amgl} €3
—AM3, sin26 ees.




Mass Matrix (scalar)

O; -diag.(mj, m3, M3)-O;

yields a symmetric matrix M?; (= Mi) with the following elements:
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Mass Matrix (scalar)

2

<2\ ]2
RO~ || |H\2+$m?{,

BViE

-'}'n..QH ~ MZcos?23 +

kA2 |

RViE

H|? ~ M2:2 + M222))

NoH fiogr =~ M2 5 sind + M2 ; cosb.

M H e = M3 25 cosf — M3 eq sind,

) R . . }\2 .
€108 — €281n6 Pu'g SV anf

€1

g0 egcosf +ersingd M3 1+ i—?mn,@T




Mass Matrix (scalar)

(2,3): koM = ﬂ[%f&iuﬁ cosf. )\1AQ|H|2 — O M?sinf cosb.

Mz + 6M? = AM3(1 — &),



Mass Matrix (scalar)

(2!3! * koM = ﬂffﬁHillH cost. f\lf\g‘H"g = M “sinf cost,

M2+ 6M? =~ AMZ(1 — ),

KO A
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Mass Matrix (scalar)

m ~ m5 + AM3, (€8 — €7) sin“0 — Am3g,e]
+ MZsin® cosf (tanf — tand)
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Mass Matrix (scalar)
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Mass Matrix (scalar)

We can fulfill the constraints e.g. with

e 1,20.7, | 4,/ A, ] =0.03, tan{ < 102,
e M,~500GeV, M, ~ 5TeV,

e g~ 101-102, |tanO]| > 10*1.

The mixing btw H and the smglets can be suppressed enough.
The mixing btw ¢ and X is almost the maximal.




Conclusion

e The MSSM p term is dynamically adjusted by singlets
such that the min. cond. of the Higgs is fulfilled.
A FLAT DIRECTION compensates m,, 2, while the SM Higgs does m .

* A relatively small soft mass of a singlet (m,? or m;?) is responsible
for the small <H> (or small M,). Possible by Small Gravity Medi. Effects!

e The MSSM SUSY ptl.s are heavy enough to avoid Exp. Bounds and FCNC.
Possible by Large Gauge Medi. Effects!

e A sub-GeV fermionic DM is predicted, while the Higgsino is quite heavy.

* The Mixings btw the Higgs and singlets can be suppressed enough
by introducing several singlets.




Thank You !!



