

RADSAGA ESR12 progress

Tomasz Rajkowski

CERN, 22nd Mar 2018

General idea about ESR12

- ESR12 in RADSAGA started in January 2018
- Joint project of 3D-Plus company and IES/RADIAC team
- Supervisor: Frédéric Saigné
- Company supervisor: Pierre-Xiao Wang
- Objective of my work: to determine an optimal strategy of radiation tests for full System-In-Package (SiP) modules or Individual PCBs with facilities available in the RADSAGA consortium.
- ESR12 as one of system-level topics in RADSAGA

Going into details

 Objective of my work: to determine an optimal strategy of radiation tests for full **System-In-Package (SiP) modules** or Individual PCBs with facilities available in the RADSAGA consortium.

- SiP:
 - compact system
 - generally based on COTS components (not rad-hard)

In principle: how to test systems?

My current work

- First approach: tests of Point-of-Load DC/DC converter in CHARM facility
- Already available test results:
 - TID/SEE component level tests for all active components of PoL
 - SEE tests of 2D version of PoL
- What devices do I want to test:
 - 3D modules of Pol
 - 2D versions of PoL, also with slightly changed design (e.g. some ICs changed, some protection circuits removed)
- What do I expect:
 - to observe what is the system response for radiation, comparing to component-level tests
 - to observe how different versions of PoL design behave in radiation environment
 - how different hardening techniques impact on system response

Dziękuję za uwagę! (Thank you for your attention!)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie-Skłodowska-Curie grant agreement number 721624.

Backup slides

- 2011-2014: Space Research Center of Polish Academy of Sciences, project BRITE-PL:
 - subsystem and system level tests of nanosatellites (including TVac, thermal, vibration tests and launch campaign)

• 2011-2014: BRITE-PL (continued): satelite operating and training of

satellite operators

- 2012-2014: Astri Polska (subsidiary of SRC PAS and Airbus D&S): PICARD project: on board computer for CubeSats (technical management)
- 2014: Warsaw University of Technology Master Degree: JTAG-based fault-injection tool for MicroBlaze microcontroler

- 2014-2017: SRC PAS OPS-SAT
- HW engineering and project management in development of subsystem for ESA CubeSat
- opportunity to perform radiation tests of electronics for my design:
 - Co-60 TID tests of RS422 transceivers (ESTEC facility)
 - LINAC gamma rays tests of whole PCB design (my first system-level radiation test ☺)

My background – to sum up

- test engineer, HW designer and system designer in satellite missions
- also project manager in ESA project (but didn't like it much)
- familiar to radiation effects mostly from the point of view of designer of satellite subsystems
- some experience in preparing radiation tests

• ... and I will be happy if some of this would be helpful!

