Radiation Test Standards for Space – MCQ correction

RADSAGA Training Workshop – March 2018

Françoise BEZERRA

Space Environment & New Components Team Centre National d'Etudes Spatiales Toulouse, France

Question 1:

- ☐ The sun
- ☑ The Galactic Cosmic Rays
- ☐ The Van Allen belts

Question 2:

Which of these radiation induced phenomenon is <u>not</u> cumulative.

- ☐ TID
- ☑ SEFI
- DDD

Question 3:

High temperature is worst case condition for:

- □ SEU
- ☐ SEB
- ☑ SEL

Question 4:

The TID deposited in a given material by an incident charged particle depends on:

- ☐ The target material
- ☐ The incident particle type and energy
- ☑ Both of them

Question 5:

Protons can induce:

- □ TID
- ☐ TNID
- ☐ SEE
- ✓ All of them

Question 6:

NIEL expresses the ability of a particle to:

- Deposit TID
- ☑ Deposit TNID
- Destroy the Device Under Test

Question 7:

Which of these SEE is destructive and cannot be protected

- ☐ SEL
- ☐ SEB
- ☑ SEGR

Question 8:

Regarding SEGR, the result of a test is:

- A parametric drift curve
- □ A cross section curve
- ☑ A safe Operating Area

Question 9:

Beam propagates in air when its energy is bigger than:

- 1MeV/n
- ☑ 10MeV/n
- ☐ 1GeV/n

Question 10:

Which beam doesn't deposit TID by direct ionization?

- Heavy ions
- ☑ Neutrons
- Protons

Question 11:

The LET of a beam can be modified by:

- ☑ Using degraders
- ☐ Changing operational temperature
- ☐ Increasing the flux

Question 12:

TID deposited in a device is function of:

- ☐ The beam LET only
- ☐ The beam fluence only

Question 13:

Which of these standards is dedicated to	Single Event Latch-up testing?
--	--------------------------------

- □ ESCC 22900-5
- MIL-STD-750E Method 1080.1
- ☑ ESCC 25100-2

Question 14:

There is no standard that fixes how to test electronic devices regarding:

- ☑ TNID
- ☐ High TID levels
- ☐ SEGR

Question 15:

When irradiating a flip chip packaged device under limited energy heavy ion beam, the sample shall be prepared by:

- ☑ Mechanical thinning
- □ Chemical opening
- ☐ Laser beam erosion

Question 16:

Standard MIL-STD-750E Method	1080 is	specific to:
------------------------------	---------	--------------

- SEB testing
- SEGR testing
- ☑ SEB &SEGR testing

Question 17:

Between 2 irradiation steps of a given device, what is the maximum recommended delay in order to avoid recovery?

- **」** 1h
- ☑ 2h
- **→** 4h

Question 18:

TID testing of bipolar devices shall be performed at:

- ☐ High dose rate (1krad(Si)/h or more)
- ✓ Low dose rate (some tenth of rad(Si)/h)
- High dose rate and temperature annealing

Question 19:

TDE means

- ☐ Total Dose Equivalent
- ☑ Time Dependent Effect
- □ True Dielectric Effect

Question 20:

Are dose rates recommended by MIL-STD888J Method 1019.9 and ESCC22900-5

- □ Really different
- Exactly the same
- ☑ Quite similar

Question 21:

The 1h maximum delay between end of Cobalt 60 irradiation and start of the electrical characterization can be extended when:

- ✓ Devices are transported in dry ice
- ☐ The DUT is in CMOS or BiCMOS technology
- All devices input outputs are set to 0V

Question 22:

When performing TID irradiation with Co60, which situation is acceptable?

- ☐ The DUT is very close to the source
- The electronic devices close to the DUT are shielded with lead
- ☑ The DUT is set to cryogenic temperature

Question 23:

According to the standards, a proton beam can be used to:

- ☑ Study the SEE response of a device
- ☐ Study its TID behavior
- Study its TNID behaviour

Question 24:

After irradiation with high energy protons, devices become radioactive for

- A few minutes
- ☑ Days or months
- They don't.

Question 25:

When performing a SEE test, which information is the less important?

- ☐ The ion LET
- ☑ The ion specie
- ☐ The lon range

Any other question?

RADSAGA

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie grant agreement number 721624.