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Radiation and Space Weather




Overview: particle energy ranges
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Radiation in space
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Trapped radiation belts (Van Allen belts)
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Radiation belt sources
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High Energy Protons (Inner Belt)
Cosmic Ray Albedo Neutron Decay

Nuclear interaction in atmosphere

Some products are upward travelling
neutrons

Decay (half life ~10min) into p, e
Results in very stable population

Lower energy protons can be inserted via
the magnetospheric tail
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Reconnection

Magnetotail

High Energy Electrons (Outer Belt)
Geomagnetic Storms

Geomagnetic Tail loaded

Reconnection results in earthward
propagation & acceleration

Subsequent acceleration through wave-
particle interactions

Transport through radial diffusion
Loss in storms
Results in very dynamic population




Trapped particles

Three Motions
gyration; bounce; drift

Trajectory of
'trap ped particles




Typical parameters of trapped radiation

Particle

1 MeV Electron 10 MeV Proton

Range in aluminium (mm) 2
Peak equatorial omnidirectional flux (cm-2s-1) 4 x106
Radial location (L) of peak flux (Earthradii) 4.4
Radius of gyration (km)

@ 500 km 0.6

@ 20 000 km 10
Gyration period (s)

@ 500 km 10-5

@ 20 000 km 2 x104
Bounce period (s)

@ 500 km 0.1

@ 20 000 km 0.3

Longitudinal drift period (min)

@ 500 km
@ 20 000 km

W
1, (=,

0,4
3.4 x10°
1.7



Radiation belts and satellite orbits




Trapped radiation belts (Van Allen belts)

Lifetimes

= Proton belt:
= Very stable
= Trapping times can be 10s of years

= Electron belt:
= Highly dynamic, trapping times: days or weeks
= Always refilled vis solar-terrestrial interactions

= Proposals have been made to destroy the proton belt
by scattering from long electromagnetic tethers with
high charge



Cosmic rays

Galactic cosmic rays are very energetic protons and ions
originating outside of our solar system

When they reach Earth they interact with atmospheric atoms
creating cascades of secondary particles




Long term variations of the radiation
environment in space

- Earth”s magnetic field
« Solar cycle
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Earth magnetic field
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Earth magnetic field

= To the first approximation and when seen from
larger distances the magnetic field is a dipole.

= The field strength of an ideal dipole is given by:

B=M,R3(1+3 cos?0)/2

where
M,: magnetic dipole moment,
R: radial component in Earth radii,
0: magnetic latitude measured from the magnetic pole



Earth magnetic field

= The magnetic field of Earth is mainly (to > 90%)
caused by a magneto-hydrodynamic dynamo
operating in the liquid outer core of Earth.

= External components from the ionosphere and the
magnetosphere contribute as well.

= The magnetic field axis differs from Earth’s rotation
axis

= The magnetic field changes, both in position and
strenght



Origin of Earth magnetic field




Earth magnetic field

Earth magnetic field is:
= tilted relative to the rotation axis (by about 11°)
= offset from the center of Earth (by about 560 km)

The magnetic field was weakening by about 6 %
during the last 110 years.

Recent studies indicate an increase of the
weakening up to ca 5% per decade (TBC)

The offset is presently increasing by 10 -15 km per
5 years

The magnetic field is changing its polarity at
irregular intervals of a few hundred thousand to
million years

During such a reversal it does not vanish
completely



Earth magnetic field
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Changes in Earth magnetic field
From ECSS Space Environment Standard

Epoch M, Dipole tilt Offset from
(nT R.3) (Deg) Earth centre
(km)
1900 32176 11.39 331
1930 31433 11.47 378
1960 31 043 11.49 442
1990 30 318 10.86 515

2010 29 973 10.06 563



The Earth magnetic field in the SAA

gufm1: historic model for 1590 - 1990
IGRF: International Geomagnetic Reference Field
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The changing Earth magnetic field
Source: NASA

Simulation: the magnetic field before, during and after reversal




Position of magnetic North pole
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Radiation belt models

1.E+08 T T
Models of radiation | A
. LE+O7 ,v’"{ —m—2mev |
belts provide N e >N e oy
engineers with N 2 | e
1E+05 | 4Re S oo MeY

quantitative data

Lhies AN N
1.E+04 ‘j X

AL, \
1.E+03 + ;..“‘

(1 \
1.E+02 - [ ‘ | \R\

] v
1.E+08 1.E+01 + i“ '
—o—> Energy: 1. MeV
1.E+07 \ > Eneroy: 10 Mev 1.E+00 ’ . \\0 M
9 10 11

—&— > Energy: 30 MeV
LE+06 —8— > Energy: 100 MeV 1 2 3 4 5 6 7 8
: \ Geomagnetic L Value (Earth radii)

1:E+04- \\\ Electron fluxes
R A\ Radiation belt models have to

Ol y use the correct magnetic field
1E+00- epoch
1 2 3 4 5 6

Geomagnetic L value (Earth radii)

Proton fluxes

Omnidirectional Flux > E (/cm2/sec)

12

Omnidirectional Flux > E (/cm2/sec)




Radiation, SAA

The South Atlantic Anomaly (SAA)
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Electron fluxes on PROBA-1 satellite at ca 600 km
Source: ESA

SREM/TC3 Apr 17—1%, 2006




Radiation, recorded anomalies of UOSAT-2

UOSAT—2 Memory Upsets

ESA/ESTEC The Netherlands NOAA/NGDC Boulder




The solar activity
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The solar activity

The solar activity has a cycle of about 11 years
(but it varies between 8 and 16 years)

The cycle is driven by the evolution of magnetic
fields

After each cycle the orientation of the magnetic
fields is reversed

Systematic recording started in 1750 with the
maximum of cycle 1 around 1760

We are now in Solar Cycle 24



Solar activity: solar cycles
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Solar activity: solar cycles

Image: NASA/MSFC

400 Years of Sunspot Observations
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Solar activity: solar cycles

Image: US Geol. Survey
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Solar activity: Sunspots

2012 Jun 14 23:20:00




One marker of high solar activity are sunspots

Sunspots are darker and cooler areas on the sun.
The temperature of sunspots is typically 3000-4500K
Sunspots can be much larger than Earth

They often come in pairs and groups

Sunspots can exist for days, weeks or months

Near sunspots are hotter active areas.

The net results is an increase of the total solar
radiation by about 0.1% during solar maximum



Sun spots
Images: NASA




Solar activity: Sunspots

Image: NASA/GSFC

Sun spots move from higher latitudes to the Equator during one cycle.

Sunspots from different cycles can be present simultaneously
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Solar activity: Sunspots and F10.7 flux

F10.7 flux: solar flux at a wavelenghts of 10.7 cm in
units of 104 Jansky (one Jansky equals 1026 Wm-2
Hz1).

This unit is often called sfu (solar flux unit)
Sunspot number, R:
R=k (10 g +s)
were
= s is the number of individual spots
= g the number of sunspot groups
= k is an observatory factor

Empirical relation F10.7 with R (averaged over 1
month or longer):

F10.7 =63.7 + 0.728R +8.9x104R?



Solar activity: Sunspots and F10.7 flux

ISES Solar Cycle F10.7cm Radio Flux Pregressicn ISES Solar Cycle Sunspot Number Progression
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Solar activity: Sunspots and F10.7 flux

The F10.7 flux is a good proxy of the UV flux of the sun

The total solar output changes only by about 0.1 %
during a solar cycle

But the UV and radio flux can change by factors 2-3 or
more (being highest at high solar activity)

The energetic UV flux is important for the Earth
atmosphere

The F10.7 flux can be measured from the ground, but the
UV flux cannot.



The solar constant

The total solar radiation at 1 AU from the sun
(average Earth-sun distance) is called: solar constant

It is defined as flux to a surface normal to the sun.
It s value is:

S=1361 W/ m?2 (older value was 1366 W/ m?)

It ranges from 1321 W/m2 (Jul) to 1412 W/m2 (Jan)

The solar flux at the surface of Earth (without clouds)
varies from ca:

700 W/ m2 - 900 W/ m?



Radiation, variability

Trapped radiation levels are always present

= At lower altitudes proton fluxes can be lower during
solar maximum

= Electron fluxes are usually higher at solar maximum
Cosmic ray fluxes are lowest during solar maximum

Energetic particle events from the sun (mainly high
energy protons) can lead to high radiation levels for
several hours

The magnetosphere shields Earth from cosmic rays
and energetic solar protons (cut-off rigidity, it
depends on magnetic latitude, poles are “open”)

Extremely energetic cosmic rays can reach the
ground from all directions and at all times



Short term variations of the radiation
environment in space

- Brief introduction to space weather
- Solar particle events
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Solar particle events
image source: NASA

= Energetic particle events from the sun (mainly
protons) occur at random intervals

= They can reach Earth within hours

h .‘ 'f"*' : . .

NSelar Energetic Particles
{Solar Particle Eventsor
Coronal Mass Ejections)




Space Weather




Solar events
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Solar-terrestrial interaction

The magnetosphere is highly
dynamic

The interaction with charged
particles from the sun and their
magnetic field leads to:

B Disturbance of the magnetic
field

B Injection of particles into
magnetosphere

B Aurora at lower latitudes

® High energy plasma

B New (temporary) radiation
belts



Visibility of Aurora Borealis
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Visibility of Aurora Borealis

Kp: geomagnetic index
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Radiation belts, variability

Radiation Environment: Earth Orbit
Van Allen Belts — drastic temporal changes

Imner Van Allen Aot

Transient event Sept. 2012; Image credit: Dynamics of Van Allen belts; Image credit: NASA
NASA / JHU-APL / Univ. of Colorado Goddard/Duberstein; DOI: 10.1002/2015JA021569




Solar electromagnetic (x-ray) flares
Image: SOHO, ESA/NASA




Solar Particle Events (SPE)




Coronal Mass Ejection (CME)
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Coronal Mass Ejections
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Solar events, movement in space

* Electrons, protons and ions travel along magnetic field lines
* The solar magnetic field is not a dipole

® Theinterplanetary magnetic field is carried by the solar wind

* The magnetic field lines are not straight but curved

V4

y 4
®* The connection ofthe emitting region of the sun to Earth via the

magnetic field lines decides on effects on Earth

®* Events initiated behind the sun can reach Earth



Particles in interplanetary magnetic field
Image source: NASA?




Solar events

Time it takes to reach Earth

= X-ray flares: 500 s (speed of light)
= Most energetic particles: a few hours

= Energetic particle radiation: several hours to 1
day

= Plasma from CMEs: several days



Magnetic reconnection
Illustration: ESA

Magnetic reconnection is seen as a major
mechanism to accelerate particles in the
magnetosphere and also above the sun surface.
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Effects of SPEs
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Effects of enhanced radiation belts
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Effects of CMEs
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Hazards of Space Weather

A major storm could:

Disable temporarily a large number of satellites,
— recovery would take days to weeks and cost
millions

Damage permanently 10s of satellites
— recovery would take years and cost billions

Lead to severe disturbance of dependent ground
systems



Space Weather hazards

Solar flares and geomagnetic storms cause

ionisation of the upper atmosphere.

Potential impacts:

= Disturbances in satellite telecommunication and
radio data links

= Fading and disturbance in VHF/UHF
communication including effects on aviation in
polar regions

= Increased navigation errors or loss of signal in
satellite navigation

Solar flares and CMEs expand the upper layers of
the atmosphere increasing atmospheric drag

= Impact on most orbits below 600 km

= Earlier than expected re-entry for low orbits



Space Weather hazards

= Very strong solar events can increase the solar
radiation dose at aircraft flight altitudes up to
300-fold.

= Impacts are mostly in the polar region

= Note: solar radiation will never cause immediate
health risk for aviation but the annual dose limit
for crew could be reached sooner.

= An electronic device can suffer Single Event
Effects (SEE) due to an energetic particle impact
in the semicinductor material



Space Weather hazards

Potentially destructive current induced into long,
conducting structures like power grids, wired
communication links, railway lines and gas pipelines

Potential impacts:

= Disturbances in power grids,

= Tripping of relays, in extreme cases transformer
damages causing blackout.

= False signals in railway control systems

= Increased corrosion of gas pipelines



Solar particle events

and the increase
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Solar events

Halloween storms 19 Oct - 5 Nov 2003

were a major recent solar events

= Not just a storm, but a series of
events 18 X-ray events: M5.0 -
X28.0

= 18 radio blackout events: R1 - R5

= 5 CMEs with geoimpacts: Kp 6 -9

= 5> 10 MeV proton events

Continuing disturbances cause

accumulated damage e.q.

= on solar arrays

= increasing risk of permanent
radiation damage

= complications in the satellite
recovery

= service outages in satellite
dependant ground systems

2003/10/18 00:18



Space Weather events

Effects on space missions during the
Halloween storm (Oct — Nov 2003)

Mars Odyssey mission:
Safe mode during
radiation storm.
Memory error and loss
of MARIE instrument

GOES-9, 10 and 12:
High bit error rates (9,10),

magnetic torguers disabled (12)

Mars Express star
trackers blinded by
particle radiation

ACE: EPAM instrument
permanently damaged

Smart-1 spacecraft
solar panels damaged

DMSP F16: SSIES
sensor lost data twice,
microware sounder
damaged

ADEOS-2
Spacecraft lost

Multiple anomalies in GEO
TV and Pay Radio satellites:
Momentum wheels, CPU,
service outages, ...




Space Weather events

Ground Effects of Space Weather during
Halloween storm (Oct — Nov 2003)
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The Space Environment

Radiation belts

Two belts:

— Inner belt — dominated by protons
« CRAND= Cosmic Ray Albedo Neutron Decay
« ~static
— Outer belt — dominated by electrons
« Storm driven
* Very dynamic
— the “first scientific discovery of the space age” by James
Van Allen et al., Explorer | (Jan. 1958) & Explorer Il (Mar. 1958)

EXTERNAL TEMPERATURE GAUGE

HIGH-POWER TRANSMITTER
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http://en.wikipedia.org/wiki/Image:0200146.jpg

The Earth magnetic field

The magnetic field is weaker over the South Atlantic
(South Atlantic Anomaly, SAA) and stronger South of
Australia

Total intensity (nT) at 400km altitude at 2005.0




The Space Environment

Space Radiation Environment

Radiation Environment: Overview

Space* Radiation Environment

*: really means solar system.

Galactic Cosmic Solar Energetic
Rays Particle Events
Protons {< 100x Electrons Heavier lons (GCR, < 1 TeV): HZE (<1 GeV): CMEs,

b ions Z=1-92; Flares; Short-term,
) (< 10x MeV) (< 100x MeV) continuous backer.; High flux

anticorr. with solar

activity. electrons | | Z=1-2+,

Source: DOI: 10.1109/TNS.2003.813131



Solar events

Magnetic shield

+——— Aurora oval

Solar flare

Magnetic field

Not to scale
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