Monte Carlo generation for Linear e^+e^- Colliders

Ulrike Schnoor

ulrike.schnoor@cern.ch Linear Collider Generator Working Group

CERN

April 11, 2018 MCnet Meeting

Introduction

Monte Carlo Generation for Linear Colliders

Generators Ingredients

Future linear colliders

International Linear Collider ILC

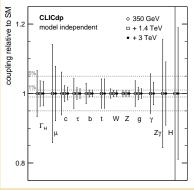
- Mature study of linear electron-positron collider up to 500 GeV; first stage at 250 GeV is proposed
- Extensive studies of physics potential, cf. [1506.05992], [1710.07621: 250 GeV]

Compact Linear Collider CLIC

- CDR published in 2012
- First beams in 2035
- Staged operation:

350 GeV top threshold scan380 GeV Higgs physics1.5 TeV focus on BSM physics

3 TeV focus on BSM physics

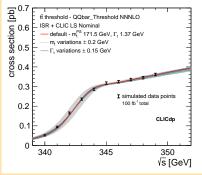

Recent overview talk on CLIC physics (Ph. Roloff): https://indico.cern.ch/event/668147/

Physics at CLIC: Higgs

- Measurements at all three energy stages explored in [1608.07538]
- Recoil mass in inclusive HZ production \Rightarrow model-independent g_{HZZ} measurement
- Model-independent measurement of invisible Higgs decays
- Higgs self-coupling $\Delta\lambda/\lambda \approx 10\%$ using sensitive differential distributions in double Higgs production

Global fit

to extract Higgs properties from cross-section measurements:



Physics at CLIC: Top

- Top physics report in publication
- Threshold scan to extract mass
- Measurement of top mass with ≈50 MeV precision (currently dominated by NNNLO scale uncertainty) in a theoretically well-defined manner
- Top Electroweak couplings, FCNC top decays, forward-background asymmetry, top Yukawa couplings,

Threshold scan

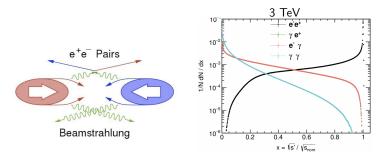
scan around 350 GeV

BSM physics: Yellow report in preparation

. . .

Software and simulation chain

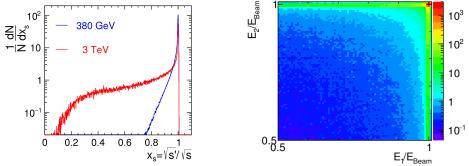
- Shared infrastructure by ILC and CLIC
- DD4hep shared also with other projects (e.g. FCC)



+ **DELPHES** card for fast simulation

Beamstrahlung and luminosity spectrum

- Very small beams to achieve high luminosity \Rightarrow electromagnetic interaction of e^+ and e^- beams leads to synchrotron radiation: *beamstrahlung*
- Collective (beam) effect; real photons


Beamstrahlung:

- modifies energy spectrum of the colliding e^+e^- pairs
- produces $e^{\pm}\gamma$ and $\gamma\gamma$ collisions

...need to be simulated in the event generation

Beam-beam interactions

- Correlations between beams are important
- Impact on cross section measurements and lab-frame observables
- Simulation with beam-beam interactions tool GUINEAPIG [D. Schulte]
- Measured with Bhabha events
- Implementation in MC generator
 - Read (large!) beam-beam event files (e.g. from GUINEAPIG) or
 - Sample from a parametrization (e.g. CIRCE2 [T. Ohl]) \Rightarrow faster
- Important for both CLIC and ILC (depends on energy, beam size, bunch • Charge

[1309.0372]

Event generation for Linear Colliders: Whizard

- ILC TDR, CLIC CDR studies based on WHIZARD1 [0708.4233, hep-ph/0102195]
- Moving to WHIZARD2, validated in collaboration with the authors
 - Top threshold simulation in WHIZARD2 to match the high experimental precision: Resum logarithms of the the top velocity $\sim \alpha_s \ln v$ and gluon Coulomb potential terms $\sim \alpha_s/v$ in non-relativistic approach; then match this to relativistic matrix elements in the continuum [1712.02220]

Simulation of beam effects			
Effect	photons	interacting	how modeled
Energy spread	-	e^{\pm}	GuineaPig or CIRCE2
Beamstrahlung	real	γ	GuineaPig or CIRCE2
ISR	real	e^{\pm}	energy decrease of electron,
			resummed QED bremsstrahlung
Equivalent Photon	virtual	γ	small virtuality photon:
Approximation EPA			Improved Weizsaecker-Williams

Arbitrary beam polarisation

Other generators for linear colliders

PhysSim

used for 2 \rightarrow 8 processes (e.g. ttH, ttZ, ttbb) [https://github.com/iLCSoft/Physsim]

MadGraph5_aMC@NLO: Madee Plugin

- · Beam polarisation via helicity amptlitudes
- · Photon initial states within Improved Weizsaecker-Williams formula
- · Beamstrahlung using unweighted beam profile as input
- ISR via dedicated plugin [1804.00125]; work in progress for internal treatment

Pythia

· Used for parton shower, hadronization

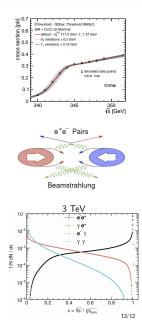
Other generators

always welcome!

Ulrike Schnoor (CERN)

Ingredients for Linear Collider event simulation

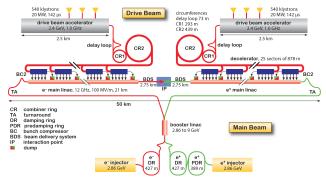
Ingredients:


- Beam polarization
- Hard processes for $e^+e^-, e^\pm\gamma, \gamma\gamma$
- Simulation of ISR
- Capabilities to include beamstrahlung from parametrization (e.g. CIRCE2) or beam-beam event files
- Interface to hadronisation
- NLO QCD and EW including matching: nice to have
- Output ideally LCIO, currently also possible HepMC, StdHEP, HepEvt (\longrightarrow can be extended!)

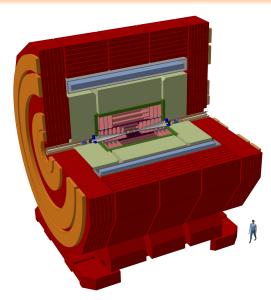
We would be happy to give advice and to test releases!

Summary

- Status of studies about potential of CLIC, ILC for Higgs physics, top physics and BSM physics
- Issues in MC generation for linear colliders:
 - Beam-Beam effects
 - Photon-induced processes
 - ISR
 - · Beam parameters
- Ingredients for MC simulation for linear collider studies



Additional material


The Compact Linear Collider CLIC

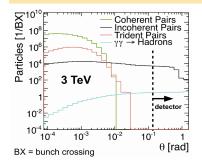
- Future e^+e^- collider at the TeV scale
- Novel accelerator technique based on radio-frequency devices and a two-beam acceleration scheme

CLIC Detector: CLICdet

Designed for Particle Flow Analysis and optimized for CLIC environment

- 4 T B-field
- Vertex detector (3 double layers)
- Large Silicon tracker R=1.5m
- Highly granular calorimeters:
 - Si-W-ECAL 40 layers (22 X₀)
 - Scint-Fe-HCAL
 60 layers (7.5 λ_l)

Precise timing for background suppression


Simulation of beam-induced backgrounds

Coherent and incoherent e^+e^- pairs

simulated in the GuineaPig beam simulation [D. Schulte]

$\gamma\gamma \rightarrow {\rm hadrons}$

• Overlayed on hit level to the hard processes for full simulation and reconstruction according to average interactions per bunch crossing

- Bunch trains with 312 bunches every 0.5 ns
- + $\gamma\gamma \rightarrow$ hadrons suppressed with timing cuts

Whizard for linear colliders

Universal Monte Carlo for elementary processes at (future lepton) colliders

- WHIZARD2 incorporated in ILC/CLIC simulation chain
- CIRCE2 for beamstrahlung spectra (validated for CLIC)
- Written in modern Fortran, matrix elements with OCaml in subpackage $O^{\prime}\mathsf{Mega}$
- · Parallelisation on HPCs
- Makes use of standard externals, e.g. LHAPDF, HEPMC etc
- NLO-QCD via one-loop providers:
 - GoSAм [G. Cullen et.al.]
 - OpenLoops [F. Cascioli et.al.]
 - RECOLA [A. Denner et.al.]
- Interfaces to FEYNRULES, SARAH for models

