Rivet development for the heavy-ion community

Przemek Karczmarczyk^{1,2}, Jan Fiete Grosse-Oetringhaus², Andreas Morsch², Jochen Klein³

 $^1 \rm Warsaw$ University of Technology, Faculty of Physics $^2 \rm CERN,$ the European Organization for Nuclear Research $^3 \rm INFN$ Turin, Italy

17th MCnet Meeting, 10.04.2018

ALICE

- (注) (注)

Overview

1 Introduction

- 2 Towards heavy-ions
 - Rivet in ALICE
 - Software limitations
- 3 Framework development
 - Tools, extensions, and analyses
 - Examples

4 Summary

∃ ▶ ∢

Introduction

Main idea

Create an interface between experimental data and theoretical predictions for the heavy-ion community

What do we have?

- Analyses (usually with finite acceptance, non-trivial cuts, non-trivial algorithms of extracting physics objects, etc.)
- Data from different experiments published in papers (values usually published in HepData)
- ► Large number of different Monte Carlo (MC) event generators
- What do we want?
 - Test different MC models by comparing their results to the experimentals ones

- 4 同 1 - 4 回 1 - 4 回 1

Rivet

Rivet: Robust Independent Validation of Experiment and Theory

- ► Generator-independent analysis framework
- System for validation and tuning of event generators
- ► Fast and direct comparison between experimental data and generators
- Rivet became the LHC standard for analysis preservation
 - ▶ In ATLAS & CMS: standard for analysis teams to write a Rivet routine
 - ▶ Interest in other communities, e.g. heavy-ion community

MCPLOTS project

MCPLOTS: a particle physics resource based on volunteer computing

- ► The idea: enable anyone to quickly get an idea of how well a particular model describes various data sets
- ► Automatize Rivet creation of comparison plots
- Provides a simple online repository of plots

- → Di-jet χ
- Di-jet Δφ
 Di-jet mass
- HT
- Jet Fragmentation
- Differential Jet Shape

10.04.2018

5 / 18

Rivet in ALICE

- Every PWG (Physics Working Group) in ALICE is working on rivetizing their analyses
 - ► This will become a common practice
 - \blacktriangleright No support for heavy-ion analyses \rightarrow the work is limited to pp studies
- What do we want to do?
 - Use existing Rivet and MCPLOTS framework and extend it to match the heavy-ion requirements
 - Create an experiment-theory interface for the ALICE experiment, which can also be used by the whole heavy-ion community

Menu - Rose Page - U-Colonies These Theory - Conversion - Conversion - Throng values and end - Operation and - Operati	morpholds.com.ch Counter 2011 - R Daniel L (Counter da L, Aleman L, Mayar	
(Lites(2)(a)) Lites(2)(a)) Lites(2)(a)) Lites(2)(a)) V Charge comments visit V Charge comments visit - charge comments visit - charge comments visit - charge comments visit	The second secon	
Top (MC only)	(a) MCCPLOTS	(b) Rivet

Przemek Karczmarczyk

Rivet for heavy-ions

10.04.2018 6 / 18

Rivet/MCPLOTS limitations

Typical scenarios:

- ► Analysis divided according to **global event variables**, eg. centrality
- ▶ Possibly 2 different beams needed to perform analysis, eg. pp + AA
- In some analyses it is required to further process results in order to obtain final values, eg. perform fitting
- ► Usually require a lot of computation time to get reasonable results
- ▶ ... and much more!
- The MCPLOTS and/or Rivet framework does not account for certain needs of heavy-ion analyses:
 - ▶ No accounting for global event observables (like centrality, thrust, etc.)
 - ▶ No possibility of providing calibration files for the analysis
 - No possibility of running an analysis with provided input files, e.g. create PbPb/pp ratio
 - Inability to split one analysis into several jobs when running on batch system

Tools

Analysis filter:

Development machine with:

- ► Rivet (2.6.0 version as a baseline)
- MCPLOTS (https://svnweb.cern.ch/trac/mcplots/browser/trunk/)
- ▶ YODA ('release-1-6' branch from https://yoda.hepforge.org/hg/yoda)
- ▶ HepMC 2.06.09 (with some modifications) + other dependencies
- Few MC generators (currently using local version of EPOS LHC and JEWEL for testing)

Webpage: http://mcplots-alice-dev2.cern.ch/

Menu	mcplots.cern.ch	→Beam: pp/ppbar ee <mark>PbPb</mark> →Analysis:	
Front Page LHC@home / Test4Theory Generator Versions Construct Publication	This it the ALICE development version of mobilos Please visit mopilits.com.ch for the official site.		
Tuning Valdation Tuning Valdation Update History User Manual and Reference	January 2017 - P. Skands , A. Karnoyeu Reference: Eur Phys J C74 (2014) 1 (arXiv:1305.3436.)	Energy loss	
Analysis filter: - Beam: pp/ppbar ee PbPb - Analysis:	Note! donate your unused CPU cycles to mcpicts, via the Test4Theory project (based on LHC@home) Select Beam, process, and observable	→ IAA	
Energy loss	Navigate these pages by using the menu to the left. The default for each topic is a comparison of a small number of models to available data, but look for im Scroll down each page to see plots under collarge energies. To choose specific generator version(b), use the Generator Vensions link towards the top of the address, an ener two sections available, and to be available data motivates.	 → R_AA → Per trigger yield 	Ibe
- ICP - R_AA - Pertriggeryield	Note: For a description in loyman's terms, and/or to find out how to donate your unused CPU cycles to help generate more statistics for incplots see the based on Virtual Machines via the LHC@home platform.	Global event	-
Global event observables - Nchvs centralty	MCPLOTS	observables	
 impact parameter distribution Multiplicity distribution 	mer uss ar mendere a a single oversider injunities on us (which call (USA) UT() (diff) (f) (f) (f) (f) (f) (f) (f) (f) (f)	 → Nch vs centrality → Impact parameter distribution → Multiplicity distribution 	0 a
Przemek K	arczmarczyk Rivet for heavy-ions	10.04.2018	8 / 1

Development

Three locally developed analyses to cover most use cases:

► ALICE_2010_I880049: Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at √s_{NN} = 2.76 TeV

Requires: centrality calibration, job splitting

- ► ALICE_2012_I1127497: Centrality Dependence of Charged Particle Production at Large Transverse Momentum in Pb–Pb Collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV
 - Requires: post-processing, job splitting
- ► ALICE_2012_I930312: Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV
 - Requires: centrality calibration, post-processing, job splitting
- Rivet & MCPLOTS developed towards our goals: full support of heavy-ion analyses

Input files

Calibration step

- Providing an input YODA file(s) containing a distribution of some parameter (impact parameter, multiplicity, etc.)
- Using this distribution to calculate global event observable (centrality, thrust, etc.)
- One file can be re-used in several analyses
- Calibration & post-processing: required method for reading of input YODA files
- Discussed with Rivet main developers and agreed on the solution
- Already implemented, available in the latest Rivet release (2.6.0)

Heavy-ion base class

- Heavy-ion analyses have some specific properties not covered by Rivet
- They have a lot in common → heavy-ion base class
- Functionalities of base class:
 - Creating/filling/reading calibration histograms
 - Selecting methods of global event observables calculation
 - e.g. using impact parameter, multiplicity, etc.
 - \blacksquare there may be > 1 method in one analysis
 - Calculating global event observables (centrality, thrust, etc.) using those histograms
 - Creating on-the-fly 'control' histograms for global event observables
 - may be used to increase statistics
 - may be used to control the correctness of calibration histograms

10.04.2018 11 / 18

- E - - E -

Post-processing

- Analyses which use > 1 beam require 'post-processing' to create ratios, comparisons etc.
- Idea to add Analysis::post() replaced with 'reentrant finalize'
- Reentrant finalize solution
 - ► Uses analysis' finalize() method several times in a different way
 - Idea: running the same analysis for different beams and preloading results from the previous runs triggers the 'post-processing' step
 - Already agreed, but not implemented yet

4 ∃ ► 4 ∃ ►

Example: $dN_{ch}/d\eta$ analysis using EPOS

ALICE

10.04.2018 13 / 18

Example: $I_{\rm AA}/I_{\rm CP}$ analysis using EPOS

Przemek Karczmarczyk

10.04.2018 14 / 18

Example: R_{AA} analysis using JEWEL

• dN_{AA}/dp_{T} : JEWEL-Simple (0-20%)

$\blacksquare \mathrm{d}\textit{N}_{\mathrm{pp}}/\mathrm{d}\textit{p}_{\mathrm{T}}$: JEWEL-Vac

Remark: too much CPU time is needed to generate sufficient events (for JEWEL: \sim 20 s per event), rebinning for the MC histograms is needed

Przemek Karczmarczyk

10.04.2018 15 / 18

Example: R_{AA} analysis using JEWEL

Remark: too much CPU time is needed to generate sufficient events (for JEWEL: \sim 20 s per event), rebinning for the MC histograms is needed

Przemek Karczmarczyk

10.04.2018 15 / 18

Rivetization of pp analyses in ALICE - ongoing

Przemek Karczmarczyk	Przemek	Karczmarczy	k
----------------------	---------	-------------	---

★ ■ ▶ ■ つへで 10.04.2018 16 / 18

- Rivetization of pp analyses in ALICE ongoing
- First prototype of Rivet/MCPLOTS for heavy-ion analyses prepared

Przemek	Karczmarczyk	
---------	--------------	--

10.04.2018 16 / 18

- Rivetization of pp analyses in ALICE ongoing
- First prototype of Rivet/MCPLOTS for heavy-ion analyses prepared
- Already possible to run heavy-ion analyses which require:
 - ► Calibration histograms as an input to calculate global event variables
 - ▶ Two different beam types to calculate final results
 - Presenting plots with different bins in global event observables
 - ► Splitting jobs into subjobs (because of too large computation time)

A B M A B M

- Rivetization of pp analyses in ALICE ongoing
- First prototype of Rivet/MCPLOTS for heavy-ion analyses prepared
- Already possible to run heavy-ion analyses which require:
 - ► Calibration histograms as an input to calculate global event variables
 - Two different beam types to calculate final results
 - Presenting plots with different bins in global event observables
 - ► Splitting jobs into subjobs (because of too large computation time)

Much more to do:

- Include our changes in the official release of Rivet ongoing, but we need faster integration
- ► More analyses to develop to show different heavy-ion aspects
- Implementing more heavy-ion requirements to Rivet: event mixing, fitting, etc.
- ► Implementing more HepMC plugins for heavy-ion generators

References

- Development version of mcplots: http://mcplots-alice-dev2.cern.ch/ (available inside CERN network)
- Source code:
 - ▶ Rivet source code: https://rivet.hepforge.org/hg/rivet
 - Rivet source code with heavy-ion extensions: https://github.com/alisw/rivet-hi
 - YODA source code: https://yoda.hepforge.org/hg/yoda, branch: 'release-1-6'

* E > * E >

Thank you!

D 1			
LYZOMO O		KO7100 0	KOT UK
FIZEIIIE	K [\d	I CZ III o	11.2 VK

◆ロト ◆聞ト ◆臣ト ◆臣ト

Backup

Przemek	Karczmarczyl	k

◆ロト ◆聞ト ◆臣ト ◆臣ト

More about Rivet

Rivet can:

- ▶ Read input from Monte Carlo generator (from file or FIFO)
- ▶ Run one or more (validated) analyses on the input data from generator
- Produce plots corresponding to available measurements
- Produce comparisons with the corresponding experimental data

Rivet features

- Provides a large set of experimental analyses (currently over 350...) useful for MC generator development, validation, and tuning
- Analyses correspond to the actual paper results
- ► Analysis algorithms in object-oriented C++
- \blacktriangleright Analysis code separated \rightarrow easy way to add a new one
- \blacktriangleright Using the HepMC event format \rightarrow independed of MC generators
- Plotting based on YODA framework

MCPLOTS project

MCPLOTS: a particle physics resource based on volunteer computing

- The idea: enable anyone to quickly get an idea of how well a particular model describes various data sets
- Automatize Rivet creation of comparison plots

The mcplots.cern.ch web site

- Provides a simple online repository of plots made with high-energy-physics generators and comparisons with a wide variety of experimental data
- ► Relies on the following basic prerequisites:
 - The HEPDATA database of experimental results
 - The Rivet Monte Carlo analysis tool
 - Monte Carlo event generators (currently implemented: ALPGEN, EPOS, HERWIG++, PHOJET, PYTHIA 6, PYTHIA 8, SHERPA, VINCIA)
 - The LHC@HOME 2.0 framework for volunteer cloud computing

MCPLOTS examples

Rivet analysis

```
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
namespace Rivet {
 class ALICE_2010_I123456 : public Analysis {
 public:
   ALICE_2010_I123456() :
     Analysis("ALICE_2010_I123456")
   { }
   void init() {
     _histNevVsImpactPar = bookHisto1D(1, 1, 1);
   3
   void analyze(const Event& event) {
     const float impactPar = event.genEvent()->heavy_ion() ? event
            .genEvent()->heavy_ion()->impact_parameter() : -1;
     _histNevVsImpactPar->fill(impactPar, event.weight());
   ŀ
   void finalize() {
     scale( histNevVsImpactPar, 1./sumOfWeights());
   }
 private:
```

```
    init(): serves to book
histograms, initialize
variables etc.
```

- analyze(...): analysis handler passes events to this function, events are being analysed and histograms are being filled here
- finalize(): histograms are modified (scaled, divided, ...) for the final data comparison

イロト イポト イヨト イヨト

m_centrRegions;

};

Histo1DPtr histNevVsImpactPar:

10.04.2018 23 / 18

HepMC & YODA

- HepMC:
 - Standarized event record library for High Energy Physics Monte Carlo generators and simulation
 - ► A direct output of most of modern generators
 - ► File format contains information about final state particles
 - ▶ Why? We need an interface between generator and analysis

■ YODA (Yet more Objects for Data Analysis):

- A histogramming toolkit developed as a lightweight common system for MC event generator validation analyses
- ▶ The core histogramming system in Rivet

Przemek Karczmarczyk

YODA logo (* 10.04.2018 24 / 18