Making data on HepData
re-use friendly

CEDAR Session
MCnet Workshop April 10 2018

(?’ NEW YORK UNIVERSITY

HepData is the established data interface between hep-ph and hep-th

The re-launch of HepData (https://hepdata.net/) allows us to re-assess what
experiments store on HD and how to best store it there.

Historically, HepData started with digitized versions of tables in papers, but
gradually moves to more complete information (beyond the publication)

Coincides with a move from storing mainly SM data to more searches: HD as
the place to obtain structured data for a given published expt result.

We should think of HepData records not only as a destination / archive
of data, but make records useful for non-collaboration physicists —
reinterpretation is a perfect use-case.

* move beyond table data structures
e store (simplified) likelihoods
e cross-link third-party resources (Rivet, CERN Analysis Preservation)

(?’ NEW YORK UNIVERSITY 2

https://hepdata.net/

For many analyses, most of the information that is ultimately put on
HepData is encoded in HistFactory configurations

e observed data distributions for signal and control regions

e signal and background distributions and their variations under nuisance
parameters

e pre- and post-fit distributions are accessible.

HistFactory is very structured. We can use it to systematically prepare
HepData content. Two approaches:

1. produce HepData tables directly from HistFactory workspaces

2. store complete (perhaps simplified) HistFactory configurations on
HepData as an additional resource to allow third parties to build new
models

(?’ NEW YORK UNIVERSITY 3

1. produce HepData tables directly from HistFactory

python tool (hftools) in development to prepare HD tables straight from
HistFactory workspaces:

e outputs new YML format

e configurable w.r.t. which variations to include

Here you'll find any code, additional papers, etc. relati

* variations taken as differences between Publcaion Resource Thisis alink toan &

by clicking the butt¢
HistFactory configuration

parameter value sets (“snapshots”) /., " Opentink |

/—- HistFactory

2} . C 8 nmy ne] 1 =
5 / Experiment o
> -
i JLdt =XXT' o pu (& HEPData a sign
&= signal (u=1) © HEPData Sandt
V\s=YTeV B background1
B background2 o vhary—re. 8000

HepData
vie SUDMISSION

#5 Syst. Uncert.
o background2

Data signal backgroundl
152 26,29 b2shape

published results

200-216 687 O

216-232 594 O 447 4470001220703125, 44 70001220703125 b

) 248-264 457 0O 398 39.79998779296875, 39.79996779296875 binorm 100 34,27 52shape
264-280 423 0O 332 3320001220703125, 33.20001220703125 binorm 81 44,38 b2shage
280-296 365 O 297 29.70001220703125,29.70001220703125 binorm 55 18.4252shape

00006103515625. 27.10000
998

250 300 350 400 450 500 550 600

(?’ NEW YORK UNIVERSITY 4

Storing HistFactory configurations on HepData

e can already be done by just storing zip file of base directory (that
iIncludes xml and input root files as “additional resources”.)

Additional Publication Resources

e working with HepData team to make records
that have such richer resources more o
discoverable (search filters, badge e by clicking the butt

HistFactory configuration

similar to Rivet) /v | Opentink

Here you'll find any code, additional papers, etc. relati

2 . C' B nhttps//hepdata.net/record/sandbox/1444727852 % =
c / Experiment
> o
w jl_dt = XX fb’ @~ Deta @ HEPData Q Sign
= signal (u=1) © HEPData Sand
V\s=YTeV B background1
B background2 . ' v B
Sy neert £ background2 H € p D ata
vemize SUDMISSION

152 26,29 b2shape

published results

200-216 687 O

216-232 594 0O

248-264 457 O 398 39.79998779296875, 39.79998779296875 binorm 100 36,27 b2shape
264-280 423 0O 332 3320001220703125, 3320001220703125 binorm 81 44, 38b2shape
280-296 365 O 297 29.70001220703125, 29.70001220703125 binorm 5

250 300 350 400 450 500 550 600

(?’ NEW YORK UNIVERSITY)

This appraoch is what’s used most often today. But these are “lossy”
projections of the likelihood p(x | 6)

e Analyzers pick a set of parameter settings, e.g.

* the nominal parameter set 6, : nominal distributions for signal and
standard model backgrounds

¢ the best-fit point 0*: i.e. the post-fit distribution / fitted background and
signal

e Errors according to some convention

e cither pre-fit uncertainties (e.g. what was the uncertainty on the
background going into the fit — corresponds to constraint term in the
likelihood). But information lost on type of constraint (correlated
across all bins?, shared constraind across multiple distributions?)

e uncertainty on the fitted value (e.g. 8* 6up ggown),

Useful archival information — but third-party tools like Rivet + Contur /
CheckMate, MadAnalysis are often actually interested in reconstructing a
realistic likelihood — not possible to reconstruct it from this lossy data.

(?’ NEW YORK UNIVERSITY 6

2. Store Likelihoods in HepData

Instead of taking a likelihood (which we do have when producing a
result) and tasking students on generating “views”/“projections” of it
in the form of HepData tables, we could rather store the likelihood

directly.
What’s in a likelihood:

e defines structure of the likelihood (what samples are present, what signal
regions / control regions are present

e nominal component distribution (for individual signal and background
contributions, for all regions)

¢ uncertainty data (includes type of uncertaintly, e.g. correlation
information, how are nuisance parameters shared across samples, etc.)

What do we gain
¢ | ikelihoods add important semantic information on distributions in HD.

e |[f we want to re-use e.g. for a reinterpretation, we want to be able to e.g.
reuse most of the likelihood, but switch out the signal distribution. Need
to know, which histogram is the “signal” histogram etc.

(?’ NEW YORK UNIVERSITY 7/

How do we get this inso HepData? Could just add is as a “auxiliary
resource” (short-term, but unstructured, hard to query, etc). Long term
it would be good to extend HD schemas for new data structures

e During HepData re-write, switch from home-made ASCII format to
industry standard JSON/YAML

e As a consequence, HepData is now easily extensible to add new types
of data records beyond the table by just adding new JSON schemas.

e Not everything is best represented by tables (e.g. likelihoods, model
information, mass spectra)

f HepData Record \ (HepData Record \
=y Add. Resource Ll \ kelihood ’
Add. Resource
Add. Resource F
Rivet (— link)
k Structured Unstructured) k Structured Unstructured J

(?’ NEW YORK UNIVERSITY 8

Extending the HepData schema — Example HistFactory

e HistFactory already comes with a schema (XML) that can be translated
to a HepData schema

e XML — YML
e Histograms in ROOT files — Histograms in HepData table format

e Prototype XML—YML conversion exists but would need testing

(HepData Record \ (HepData Record \
. Add. Resource o=
Add. Resource
Add. Resource ¥
k Structured Unstructured) k Structured Unstructured)

(?’ NEW YORK UNIVERSITY 9

Interactive Visualization of HistFactory models
Build proto-type for visualization module for HistFactory models in HepData.

Highlights how one has full control over all nuisance parameters / gives a

useful overview what nuisance parameters «¢ = . S
" . ¢ © modelinspector.cern.ch/multichann QW & o :

are present, which are most important

etc.

Very happy to work with HepData to get this
supported natively / advide e.g. summer
student to implement it

GIF Animation Youtube Video o

%’/ NEW YORK UNIVERSITY 10

https://giphy.com/gifs/uiLh3qZLc2aEo/
https://www.youtube.com/watch?v=UDyfvyngn9c

Making re-using HistFactory likelihoods easy

HistFactory historically closely connected ROOT / RooFit / RooStats. But it’s

a generic likelihood template:
[CERN-OPEN-2012-016]

N

P(ne,ze, ap | dpsop, 1) = || |Pois(nelve)]| fe(zela) | - G(LolA AL) -] Folaslan) (5)

cEchannels e=1 peS+T

ROOT so-far comes in as

e well-tested implementation of the template providing e.g. minimization /
interval estimation etc based on that template

e a data storage technology to store histograms or a “compiled form of the
likelihood” (a RooFit workspace)

Know-how how to use e.g. ROOT / RooFit / HistFactory mostly within
experiments.

(?’ NEW YORK UNIVERSITY 11

https://www.youtube.com/watch?v=UDyfvyngn9c

Making re-using HistFactory likelihoods easy

- G(Lo|A,AL) - H fo(aplap) (5)

peES+T

P(nc, Te, ap | ¢p, 0p, 1) = H [POiS(nc|Vc) H fe(ze|o)

cEchannels

e=1

We’re now working on a stand-alone pure-python implementation of
HistFactory

e data storage: ROOT histograms — JSON / numpy arrays (no other part
of histogram structure except for bin contents is used, arrays are fine)

e ROOT/RooFit pdf implementation — standalone scipy+numpy
try it yourself in the cloud!

iImplementation
github.com/diana-hep/pyhf
\

mdl launch binder
NEW YORK UNIVERSITY 12 @dlana

https://www.youtube.com/watch?v=UDyfvyngn9c
https://mybinder.org/v2/gh/diana-hep/pyhf/master

Making re-using HistFactory likelihoods easy
e most primitives of HF implemented

e work in progress, interfaces still fluid, happy to incorporate input. feel free
to join.

plot
1.0
S L —&§— Observed CLs
g @+ Observed CLs+b
—&— Observed CLb 0.8
----- Expected CLs - Median
0.8 [] ExpectedCLs = 10
Ij Expected CLs + 2 ¢ 0.6 |
0.6
A 0.4
04—
Z 0.2
0.2—
B 0.0 —
0] : > 3 i 5 0 1 2 3 - 5
SigXsecOverSM
ROOT HistFactory pyhf

(?’ NEW YORK UNIVERSITY 13

https://www.youtube.com/watch?v=UDyfvyngn9c

Making re-using HistFactory likelihoods easy

minimal example: one-bin hypothesis test experiment with background
uncertainty at signal strength =1

p = pyhf.simplemodels.hepdata_like(

signal_data = [10.], bkg_data
)

CLs_data = pyhf.runOnePoint(mu =

l.e. can provide pre-made HF specs for common use-cases (such as
“*hepdata-like” stat. models where you only have a overall background
uncertainty with uncorrelated bins, similar to the Contur stat. model) — but at
the same time support for e.g. full fledged ATLAS likelihoods

Vision/Goal: Load likelihood and data from HepData

new_signal = yoda.load('rivet.yoda')['signal']
pdf, data = pyhf.sources.hepdata(' insXXXYYYZZZ")

pdf.setSample(‘signal', new_signal)
recast_CLs = pyhf.runOnePoint(mu = , data)

(?/ NEW YORK UNIVERSITY

https://www.youtube.com/watch?v=UDyfvyngn9c

Scaling Behaviour, Running HistFactory on GPUs

added advantage of pure python implementation is that it gives us easy
access to hardware acceleration, modern, auto-differentiable tensor libraries
such as TensorFlow / PyTorch / MXNet that can transparently switch to GPUs

already good scaling with just oo
CPU. Expect GPUs to add | = amey
additional increase. o PyTorch

| —€— PyTorch

~
o

(o)}
o

(%)
o
1

Often Fitting time in modern
analyses not negligible (~1h) can
gain a lot from acceleration.

H
o

w
o
]

Fit time (seconds)

N
o
1

Auto-differentiation gives us
access to exact derivatives of the .
L’hood instead of minimizing via ..fo ————rr—————rr————r
finite differences / MINUIT. N Number of bins n it N
[Matthew Feickert, DIANA-HEP Fellow]

(?/ NEW YORK UNIVERSITY 15

=
o
]

https://www.youtube.com/watch?v=UDyfvyngn9c

Conclusion

Cohesion with 3rd party tools:

If we have likelihoods, 3rd party tools like Rivet/CheckMate have a clear
target of what distributions to provide as part of their analysis implementation.

Simplifying likelihoods

HistFactory is just a likelihood format. i.e. not making a statement on
content. Could be reasonable for experiments to not publish the full
likelihood, but some simplified version of it (but still in HF format), with only a
subset of nuisance parameters / variations. Considerations

e do people want 100+ nuisance pars in their likelihood

e what are experiments comforatble with supporting / maintaining

(?’ NEW YORK UNIVERSITY 16

https://www.youtube.com/watch?v=UDyfvyngn9c

Conclusion

Bonus:

first project excercising pheno-style recasting
custom UFO -SHERPA—-RIVET — pyhf

with J. Turner, H. Schulz, Y. Zhou

M2, eps — we consider CLs < 0.05 as excluded

1071 1 ° 1.0
- 0.8
10—2
, 0.6
<
n ‘ > Q
o Tt -
Ny Y
; S ne Che b 0.4
1073 42, %5e g
b ®
¢ : o
1 D 0.2
() < y
o > 3
o0 o' of
10~ 4 — T —t—— T T T 0.0

102
M2
(?’ NEW YORK UNIVERSITY 17

https://www.youtube.com/watch?v=UDyfvyngn9c

