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A very brief history of recent heavy ion physics

1980s and 1990s—AGS and SPS... QGP at SPS!

Early 2000s—QGP at RHIC! No QGP at SPS. d+Au as control.

Mid-late 2000s—Detailed, quantitative studies of strongly coupled QGP. d+Au as control.

2010—Ridge in high multiplicity p+p (LHC)! Probably CGC!

Early 2010s—QGP in p+Pb!

Early 2010s—QGP in d+Au!

Mid 2010s and now-ish—QGP in high multiplicity p+p? QGP in mid-multiplicity p+p??
QGP in d+Au even at low energies???

“Twenty years ago, the challenge in heavy ion physics was to find the QGP. Now, the challenge
is to not find it.” —Jürgen Schukraft, QM17
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Outline

Particle production in small systems
—Final state effects are observed
—Photon modification consistent with QGP formation

Small systems geometry scan
—Observation that correlations are geometrical in origin
—Data well-reproduced by hydro
—CGC calculations somewhat describe the data

Small systems energy scan
—Similar correlations for all energies
—Non-trivial fluctuations
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Intermission

Particle production in small systems
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Small systems nuclear modification
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Forward modification consistent with nPDF effects (EPPS16)

Don’t forget: particle species dependence of Cronin! There must be final state effect(s)...
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Small systems nuclear modification
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High-pT modification consistent with nPDF effects (EPPS16)

Don’t forget: particle species dependence of Cronin! There must be final state effect(s)...
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Small systems nuclear modification

 (GeV/c)
T

p
0 2 4 6 8 10

p
A

R

0

0.5

1

1.5

2

2.5

3

3.5
=200 GeVNNs+X ±h→p+Au

0-5% centrality
<-1.2 (Au-going)η-2.2<

<2.4 (p-going)η1.2<

 (GeV/c)
T

p
0 2 4 6 8 10

p
A

R

0

0.5

1

1.5

2

2.5

3

3.5
=200 GeVNNs+X ±h→p+Al

0-5% centrality
<-1.2 (Al-going)η-2.2<

<2.4 (p-going)η1.2<

PH ENIX
preliminary

 (GeV/c)
T

p
0 2 4 6 8 10

p
A

R

0

0.5

1

1.5

2

2.5

3

3.5
=200 GeVNNs+X ±h→p+Au

0-5% centrality
<-1.2 (Au-going)η-2.2<

<2.4 (p-going)η1.2<

 (GeV/c)
T

p
0 2 4 6 8 10

p
A

R

0

0.5

1

1.5

2

2.5

3

3.5
=200 GeVNNs+X ±h→p+Al

0-5% centrality
<-1.2 (Al-going)η-2.2<

<2.4 (p-going)η1.2<

PH ENIX
preliminary

Stronger effects in central collisions

Don’t forget: particle species dependence of Cronin! There must be final state effect(s)...
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Small systems nuclear modification
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Strong enhancement for backward at intermediate pT—why?

Don’t forget: particle species dependence of Cronin! There must be final state effect(s)...
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Small systems nuclear modification
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Don’t forget: particle species dependence of Cronin! There must be final state effect(s)...
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Particle species dependence of “Cronin enhancement”
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PHENIX, Phys. Rev. C 88, 024906 (2013)

π+, π−, π0,

K+, K−,

p, p̄,

φ

Protons much more strongly
modified than pions

φ mesons confusing as always...



Photons in small systems
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Thermal photons in p+Au?

Theory from Phys. Rev. C 95, 014906 (2017)
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Photons in small systems
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Photons in small systems
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Brief summary: particle production in small systems

Strong modifications at forward & backward rapidities
—Not nPDF effects alone
—Additional initial state effects possible (e.g. the usual multiple scattering)

Nuclear modification strongly dependent on particle species
—Must be final state effect(s)
—Hadronization, radial flow, etc...

Observation of low-pT enhancement of photons
—Consistent with QGP formation in small systems
—Other explanations possible

R. Belmont PHENIX perspectives on collectivity and flow in small systems at RHIC Slide 8



Intermission

Small systems geometry scan
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Testing hydro by controlling system geometry

Hydrodynamics translates
initial geometry into final
state

Test hydro hypothesis by
varying initial state
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Small systems geometry scan
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Hydro theory describes the data extremely well
Imperfect scaling with ε2 captured by hydro—disconnected hot spots
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Small systems geometry scan

v2/ε2 relationship breaks for very large ε2

The hydro hotspots are so far apart that they never connect
—Efficiency to translate ε2 into v2 goes down
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J.L. Nagle et al, Phys. Rev. Lett. 113, 112301 (2014)



Longitudinal dynamics in small systems
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p+Al, p+Au, d+Au, 3He+Au

Good agreement with wounded quark model

Good agreement with 3D hydro



Longitudinal dynamics in small systems
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Longitudinal dynamics in small systems
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Good agreement with 3D hydro for p+Au and d+Au

Apparent scaling between v2 and dNch/dη—coincidence?
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Small systems geometry scan
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Small systems geometry scan
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Testing hydro by controlling system geometry
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v2 and v3 ordering matches ε2 and ε3 ordering in all three systems
—Regardless of mechanism, the correlation is geometrical

R. Belmont PHENIX perspectives on collectivity and flow in small systems at RHIC Slide 16

arXiv:1805.02973, submitted to Nature Physics

v2

v3



Testing hydro by controlling system geometry
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v2 and v3 vs pT described very well by hydro in all three systems
—Strongly suggests QGP droplets in hydro evolution
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CGC results on small systems

New for QM18: full calculation using dilute-dense framework, v2 and v3 for small systems
geometry scan

v3 ordering is not quite right
—CGC: p+Au < d+Au < 3He+Au
—Data: p+Au ≈ d+Au < 3He+Au
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Mark Mace, QM18 arXiv:1805.09342, submitted to Phys. Rev. Lett.



CGC results on small systems
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CGC results on small systems

v2 is quite close for the three systems

v3 is rather far off
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Brief summary: small systems geometry scan

Comprehensive set of measurements for longitudinal dynamics

v2 and v3 match ε2 and ε3 ordering in p+Au, d+Au, 3He+Au
—Correlation is definitively geometrical in origin

v2 and v3 in p+Au, d+Au, 3He+Au are well-described by hydro theory
—Strongest evidence to date for QGP formation in small systems

New CGC calculations show some good agreement with data but also some considerable
discrepancies
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Intermission

Small systems beam energy scan
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Testing hydro by controlling system size and life time

Standard picture for A+A:
QGP in hydro evolution

What about small systems?
And lower energies?

Use collisions species and
energy to control system
size, test limits of hydro
applicability

t = 3 fm/c

t = 2 fm/c 200 GeV

62 GeV
20 GeV7.7 GeV

5.02 TeV

J.D. Orjuela Koop et al
Phys. Rev. C 93, 044910 (2016)

Spacetime volume
in QGP phase
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d+Au beam energy scan
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Event plane v2 vs pT measured for all energies

Hydro theory agrees with higher energies very well,
underpredicts lower energies—nonflow?
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d+Au beam energy scan
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underpredicts lower energies—nonflow?
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v2 vs pT , comparisons to AMPT
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preliminary

AMPT flow only shows good agreement at low pT and all energies

AMPT flow+non-flow shows reasonable agreement for all pT and all energies

AMPT non-flow only far under-predicts for low pT , too high for high pT
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v2 vs pT , comparisons to AMPT
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v2 vs pT , comparisons to AMPT
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v2 vs pT , comparisons to AMPT
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v2 and dNch/dη vs η
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BBC south (−3.9 < η < −3.1) used to estimate the event plane
200 GeV shows strong forward/backward asymmetry in v2 and dNch/dη
Asymmetry is large for dNch/dη at all energies, but not for v2
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v2 vs η, comparison with AMPT
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preliminary

AMPT flow only agrees with mid and forward rapidity very well, misses backward rapidity

AMPT flow+non-flow is very similar at mid and forward
AMPT flow+non-flow shows striking anti-correlation at backward rapidity
AMPT non-flow only shows nothing at mid and forward, large v2 at backward rapidity near the
detector
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v2 vs η, comparison with AMPT
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v2 vs η, comparison with AMPT
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Multi-particle correlations

vn = 〈cos(n(φsome particle − ψn))〉
v2
n = 〈cos(n(φsome particle − φsome other particle))〉

How to deal with “fake flow”?
—Kinematics
—Combinatorics

v2
n = 〈cos(n(φa − φb))〉
v4
n = 〈cos(n(φa + φb − φc − φd))〉
v6
n = 〈cos(n(φa + φb + φc − φd − φe − φf ))〉
v8
n = ...
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Nonflow approaches in AuAu

Centrality (%)
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Large pseudorapidity separation
—Big difference for 2-particle (good)
—No difference for 4-particle (good)
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Nonflow approaches in AuAu

Centrality (%)
0 10 20 30 40 50 60 70 80 90 100

2v

0

0.02

0.04

0.06

0.08

0.1

0.12

|<3η 1<|±h
 = 200 GeVNNsAu+Au {2}2v

|>2}η∆{2,|2v
PH ENIX
preliminary

Centrality (%)
0 10 20 30 40 50 60 70 80 90 100

2v

0

0.02

0.04

0.06

0.08

0.1

0.12

|<3η 1<|±h
 = 200 GeVNNsAu+Au {4}2v

ab|ab
{4}2v

aa|bb
{4}2vPH ENIX

preliminary

Large pseudorapidity separation
—Big difference for 2-particle (good)
—No difference for 4-particle (good)

R. Belmont PHENIX perspectives on collectivity and flow in small systems at RHIC Slide 28

arXiv:1804.10024, submitted to Phys. Rev. C



d+Au beam energy scan
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(d)

Measurement of v2{6} in d+Au at 200 GeV and v2{4} in d+Au at all energies
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d+Au beam energy scan
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Measurement of v2{6} in d+Au at 200 GeV and v2{4} in d+Au at all energies
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d+Au beam energy scan

Select 10 < NFVTX
tracks < 30,

integrate

AMPT sees similar trend

Fluctuations?

Not Bessel-Gaussian
Not small-variance limit
Need to understand
fluctuations better
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Components and cumulants in p+Au and d+Au at 200 GeV
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v2{4} complex
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Is the sign of c2{4} a good indicator of collectivity? No.
Fluctuations could dominate in the p+Au...
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Eccentricity distributions and cumulants

2εeccentricity 
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2
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 = 0.24, s = -0.16, k = 1.97σ = 0.56, 〉

2
ε〈d+Au, 

ε2{4} = (ε4
2 − 2ε2

2σ
2 − 4ε2sσ

3 − (k − 2)σ4)1/4

p+Au d+Au
ε4

2 0.00531 0.0983
2ε2

2σ
2 0.00277 0.0370

4ε2sσ
3 0.00147 -0.0053

(k − 2)σ4 0.00031 -0.0001

the variance brings ε2{4} down (this term gives the
usual

√
v 2

2 − σ2)

positive skew brings ε2{4} further down, negative
skew brings it back up

kurtosis > 2 brings ε2{4} further down, kurtosis < 2
brings it back up
—recall Gaussian has kurtosis = 3
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Eccentricity distributions and cumulants
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Eccentricity fluctuations alone go a long way towards explaining this

Additional fluctuations in the (imperfect) translation of ε2 to v2?
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Brief summary: small systems beam energy scan

Measurement of v2 vs pT for d+Au at 200, 62.4, 39, and 19.6 GeV
—Hydro describes higher two energies well, misses lower two energies
—AMPT describes all data well with mix of flow and nonflow

Measurement of v2 vs η for d+Au at 200, 62.4, and 39 GeV
—Hydro theory at lower energies would be very useful
—Interesting anticorrelation between flow and nonflow at backward rapidity

Measurement of v2{6} at 200 GeV and v2{4} at all four energies
—Nonflow should be combinatorially suppressed
—Highly non-trivial fluctuations
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Final thoughts

Initial and final state effects are clear in the data
—Which final state effects is perhaps not so clear

Low-pT photon enhancement observed in p+Au
—Consistent with EM radiation from QGP
—Other explanations possible

Wealth of data from small systems beam energy and geometry scans
—Higher energies described by hydro, all energies described by AMPT
—All geometries described by hydro, also somewhat described by CGC

“The optimist regards the future as uncertain.”—Eugene Wigner
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Intermission

Additional material
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Back to basics (a brief excursion)

The (raw) moments of a probability distribution function f (x):

µn = 〈xn〉 ≡
∫ +∞

−∞
xnf (x)dx

The moment generating function:

Mx(t) ≡ 〈etx〉 =

∫ +∞

−∞
etx f (x)dx =

∫ +∞

−∞

∞∑
n=0

tn

n!
xnf (x)dx =

∞∑
n=0

µn
tn

n!

Moments from the generating function:

µn =
dnMx(t)

dtn

∣∣∣∣
t=0

Key point: the moment generating function uniquely describe f (x)

R. Belmont PHENIX perspectives on collectivity and flow in small systems at RHIC Slide 37



Back to basics (a brief excursion)

Can also uniquely describe f (x) with the cumulant generating function:

Kx(t) ≡ lnMx(t) =
∞∑
n=0

κn
tn

n!

Cumulants from the generating function:

κn =
dnKx(t)

dtn

∣∣∣∣
t=0

Since Kx(t) = lnMx(t), Mx(t) = exp(Kx(t)), so

µn =
dn exp(Kx(t))

dtn

∣∣∣∣
t=0

, κn =
dn lnMx(t)

dtn

∣∣∣∣
t=0

End result: (details left as an exercise for the interested reader)

µn =
n∑

k=1

Bn,k(κ1, ..., κn−k+1) = Bn(κ1, ..., κn−k+1)

κn =
n∑

k=1

(−1)k−1(k − 1)!Bn,k(µ1, ..., µn−k+1) = Ln(κ1, ..., κn−k+1)
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Back to basics (a brief excursion)

Evaluating the Bell polynomials gives

〈x〉 = κ1

〈x2〉 = κ2 + κ2
1

〈x3〉 = κ3 + 3κ1κ2 + κ3
1

〈x4〉 = κ4 + 4κ1κ3 + 3κ2
2 + 6κ2

1κ2 + κ4
1

One can tell by inspection (or derive explicitly) that κ1 is the mean, κ2 is the variance, etc.
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Back to basics (a brief excursion)

Subbing in x = vn, κ2 = σ2, we find(
〈v4

n 〉 = v4
n + 6v2

nσ
2 + 3σ4 + 4vnκ3 + κ4

)
−
(

2〈v2
n 〉2 = 2v4

n + 4v2
nσ

2 + 2σ4
)

→
〈v4

n 〉 − 2〈v2
n 〉2 = −v4

n + 2v2
nσ

2 + σ4 + 4vnκ3 + κ4

Skewness s: κ3 = sσ3

Kurtosis k: κ4 = (k − 3)σ4

vn{2} = (v2
n + σ2)1/2

vn{4} = (v4
n − 2v2

nσ
2 − 4vnsσ

3 − (k − 2)σ4)1/4

So the fully general form is a bit more complicated than we tend to think...
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d+Au beam energy scan
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(d)

{4}2v
{6}2v

v2{2} and v2{4} vs NFVTX
tracks , all tracks anywhere in FVTX

v2{2, |∆η| > 2} vs NFVTX
tracks , one track backward, the other forward

How is v2{4} > v2{2, |∆η| > 2} possible? Can blame fluctuations to a point, but...
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d+Au beam energy scan
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d+Au beam energy scan
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Asymmetric dNch/dη and asymmetric v2 vs η

The single subevent is weighted by dNch/dη towards backward rapidity, where v2 is also
higher—the effect is more pronounced at lower energies

The two subevent is equally weighted between forward and back:
√
〈vB

2 vF
2 〉
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d+Au beam energy scan
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d+Au beam energy scan
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d+Au beam energy scan
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dNch/dη and v2 vs η alone may explain these results

There can also be some event plane decorrelation, e.g.
v2{2, |∆η| > 2} =

√
〈vB

2 vF
2 〉 cos(2(ψB

2 − ψF
2 ))
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d+Au beam energy scan
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Collectivity in large systems

Centrality (%)
0 10 20 30 40 50 60 70 80 90 100

2v

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

PHENIX
|<3η 1<|±h

 = 200 GeVNNsAu+Au 

Sys. Uncert. 6%

|>2}η∆{2,|2v
{4}2v
{6}2v
{8}2v

R. Belmont PHENIX perspectives on collectivity and flow in small systems at RHIC Slide 44

1 < |η| < 3

v2{2}, v2{4}, v2{6},
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Collectivity in large systems
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1 < |η| < 3

σv2/〈v2〉

Central: breakdown of
small-variance limit

Peripheral: non-linearity in hydro

response (e.g. J. Noronha-Hostler et

al Phys. Rev. C 93, 014909 (2016))
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Collectivity in large systems
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Collectivity in large systems
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Collectivity in large systems
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Small systems flow

—heavy flavor
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Small systems flow—heavy flavor

0.5 1 1.5 2 2.5
 [GeV/c]

T
p

0

0.05

0.1

0.15

0.2

0.25

0.3

 }
 <

 -
3.

1
η

-3
.9

 <
 

{E
P

2v

 from open heavy flavor decays-µ
Charged hadrons

=200 GeVNNs0-20% d+Au 

 < -1.4η-2.0 < 
 = 1.9%

Global
Sys

0.5 1 1.5 2 2.5
 [GeV/c]

T
p

0

0.05

0.1

0.15

0.2

0.25

0.3

 }
 <

 -
3.

1
η

-3
.9

 <
 

{E
P

2v

 from open heavy flavor decays-µ
Charged hadrons

=200 GeVNNs0-20% d+Au 

 < 2.0η1.4 < 
 = 1.9%

Global
Sys

PH ENIX
preliminary

Nonzero v2 for heavy flavor in d+Au

3.22σ, 2.16σ for v2 > 0 at backward, forward (99.9%, 98.5% one-sided)

R. Belmont PHENIX perspectives on collectivity and flow in small systems at RHIC Slide 46

charged

hadrons

heavy flavor

muons



Small systems flow—heavy flavor
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AMPT

AMPT basic features

Initial conditions HIJING

Particle production String melting

Pre-equilibrium None

Expansion Parton scattering
(tunable)

Hadronization Spatial coalescence

Final stage Hadron cascade
(tunable)
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AMPT
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CGC results on small systems

“Simple parton model” with quarks scattering off dense gluon field
Can qualitatively reproduce harmonic ordering
Off from data by a factor of 2 to 3
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CGC results on small systems

“Simple parton model” with quarks scattering off dense gluon field

Can reproduce v2{2} and v2{4}
Disagreement with data by a factor of 2, but qualitative features match

R. Belmont PHENIX perspectives on collectivity and flow in small systems at RHIC Slide 49

Mark Mace, QM18 Phys. Rev. Lett. 120, 042002 (2018)



CGC results on small systems

Abelian calculations can produce v2{2}, v2{4}, v2{6}, v2{8}
Disagreement with data by factor of 5, but qualitative features match
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CGC results on small systems

“Our prediction would therefore be that v2,3(p⊥) for high multiplicity events across small
systems should be identical for the same Nch.”
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Same Centrality
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Similar multiplicity

v3 is same in p/d+Au for different Nch

v2 looks different for p/d+Au for similar Nch, but need nonflow estimate...
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