

Attractors and Flow in Small and Large Systems with superSONIC

Ryan Weller

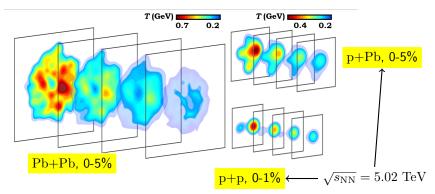
Center for Theoretical Physics, MIT

Jun 14, 2018

2nd International Workshop on Collectivity in Small Collision Systems, Wuhan

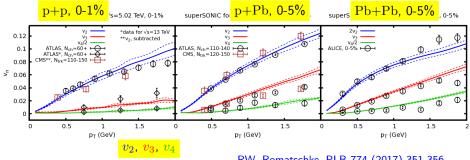
(ロ) (型) (E) (E) (E) (O) (O)

and work done at


University of Colorado Boulder

p+p, p+Pb, Pb+Pb collisions with superSONIC

"One fluid to rule them all"


RW, Romatschke, PLB 774 (2017) 351-356

 $\eta/s \approx 1/4\pi$, $\zeta/s = 0.01$

x, y, evolution in au

Results: v_2 , v_3 , v_4 in central LHC-energy collisions

RW, Romatschke, PLB 774 (2017) 351-356

Experimental data from:

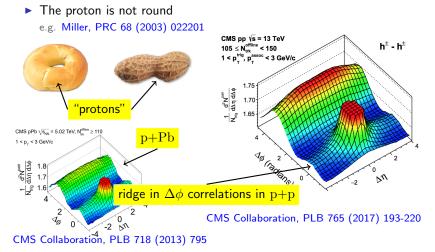
ATLAS: PRC 96 (2017) 024908, PRC 90 (2014) 044906 CMS: PLB 765 (2017) 193-220, PLB 724 (2013) 213-240 ALICE: PRL 116 (2016) 132302

$\label{eq:Why} Why? \\ \mbox{Formation of quark-gluon plasma even in } p+p? \\$

Overview

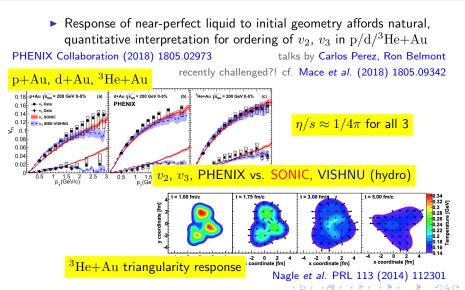
review + new

 2+1D hydro+cascade model (superSONIC) calculations of anisotropic flow v₂, v₃, v₄ in p+p, p+Pb, Pb+Pb, plus some RW, Romatschke, PLB 774 (2017) 351-356 see also Romatschke, Romatschke (2017) 1712.05815

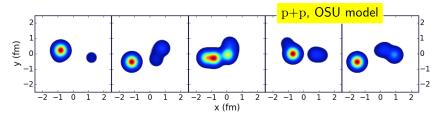

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

5

"hydro attractor"


2. The applicability of hydro in p+p (and $p/d/^{3}He+A$?): non-perturbative hydro attractor

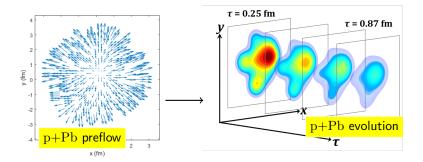
Shape of the proton, collectivity in p+p, p+A



high-energy/DIS perspective: Mäntysaari, Schenke, PRL 117 (2016) 052301

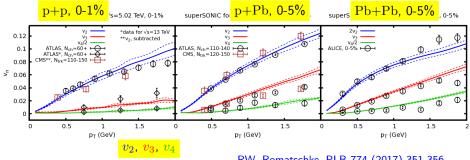
Small η/s and collectivity in $p/d/^{3}He+Au$

Monte Carlo Glauber + quarks



Welsh, Singer, Heinz (2016): 3 transverse constituent quark positions sampled from Gaussian. Low-x gluons contribute entropy around these Welsh, Singer, Heinz, PRC 94 (2016) 024919

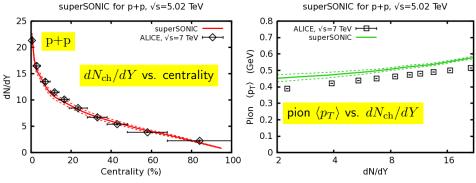
$$\frac{d^3S}{dYd^2\mathbf{x}_{\perp}}(\tau_0, \mathbf{x}_{\perp}) = S_0(\tau_0) \sum_{\{\text{part } n\}}^{N_{\text{part}}} \sum_{\{\text{quark } i \in n\}}^3 \frac{n_i}{2\pi w_q^2} e^{-\|\mathbf{x}_{\perp} - \mathbf{x}_i\|^2 / 2w_q^2}$$
$$n_i \sim \text{Gamma}\left(\frac{4}{9}, \frac{3}{4}\right), \quad w_q \approx 0.46 \text{ fm}, \quad w_N \approx 0.52 \text{ fm}$$


Evolution with superSONIC

▶ preflow→2+1D viscous hydro→B3D hadron cascade model (superSONIC) van der Schee, Romatschke, Pratt, PRL 111 (2013) 222302

$$\left[u^i \right|_{\tau_0} = 3\tau_0 \frac{\nabla^i_\perp \langle T^{\tau\tau} \rangle}{\langle T^{\tau\tau} \rangle}$$

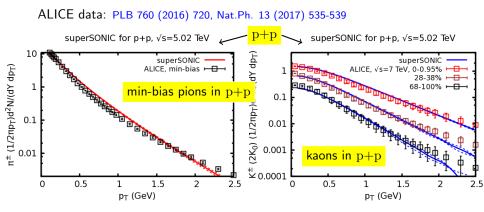
Results: v_2 , v_3 , v_4 in central LHC-energy collisions


RW, Romatschke, PLB 774 (2017) 351-356

Experimental data from:

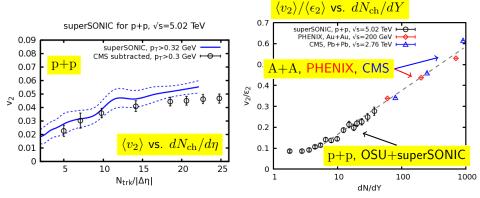
ATLAS: PRC 96 (2017) 024908, PRC 90 (2014) 044906 CMS: PLB 765 (2017) 193-220, PLB 724 (2013) 213-240 ALICE: PRL 116 (2016) 132302

superSONIC results for non-"central" $\,p{+}p$ collisions


Experimental data: ALICE Collaboration, Nat.Ph. 13 (2017) 535-539

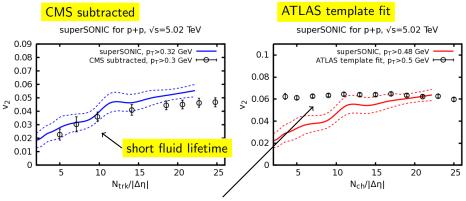
OSU+superSONIC produces NBD fluctuations of multiplicity

```
• \pi^{\pm} \langle p_T \rangle too high in p+p
```


Results: pion p_T spectra, strangeness production in p+p

 Hydro+cascade easily explains growth of strangeness with multiplicity (3 different centrality bins shown)

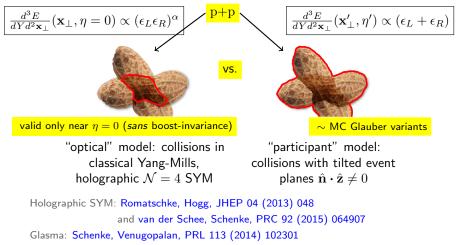
Results: $\langle v_2 \rangle$ and geometry response in non-central $\mathrm{p+p}$


Experimental data: CMS, PLB 765 (2017) 193-220

▶ p+p response v_2/ϵ_2 to geometry follows same trend as A+A for $dN_{\rm ch}/dY\gtrsim 5~{\rm fm}$

Comparing non-flow subtraction schemes for v_2

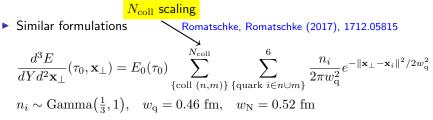
ATLAS experimental data: ATLAS, PRC 96 (2017) 024908

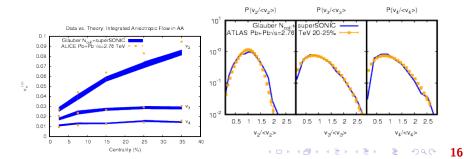


• Could increase ζ/s to increase system lifetime

► However, the v_2 at low $N_{\rm ch}$ would then be highly sensitive to non-hydro sector (i.e. dependent on Israel-Stewart τ_{π})

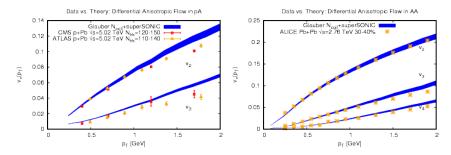
Subtleties in "choice" of hydro initial data

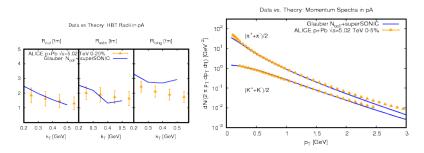

• How does $\langle T^{\mu\nu} \rangle$ at τ_0 depend on transverse geometry of proton?


15

and Chen, Fries, Kapusta, Li, PRC 92 (2015) 064912

Comparison to new superSONIC calculations

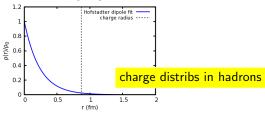



p+Pb v_n

- $\eta/s = 0.12$ for all systems
- ▶ p+Pb 0-5% (left), Pb+Pb 30-40% (right)

Romatschke, Romatschke (2017), 1712.05815

$\rm p{+}Pb$ HBT radii and spectra


Romatschke, Romatschke (2017), 1712.05815

<ロト 4 個 ト 4 目 ト 4 目 ト 目 9 Q C 18

Next steps

Be more rigorous (proton is a well-studied object)

- Nucleon form factors, (G)PDFs, spin content, etc.
- ► HERA constraints on SU(3) glue content talk by Chun Shen

cf. Mitchell, Perepelitsa, Tannenbaum, Stankus, PRC 93 (2016) 054910 and Habich, Miller, Romatschke, Xiang, EPJC 76 (2016) 408

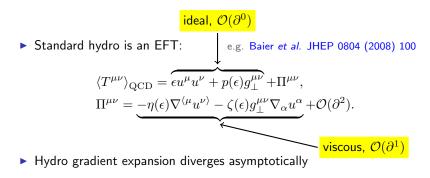
Question

How far can we push hydrodynamics?

(ロ) (母) (目) (目) (目) (20)

Puzzle: Hydrodynamics predicts its own demise

► First-order Navier-Stokes is non-causal ← ??? need non-hydro modes to stabilize Spaliński, PRD 94 (2016) 085002


 $\underbrace{\delta\langle T^{\mu\nu}\rangle \sim e^{-i(\omega t - \mathbf{k} \cdot \mathbf{x})}}_{\text{linear response}} : \text{ modes with } \lim_{\mathbf{k} \to 0} \omega(\mathbf{k}) = 0 \qquad \lim_{\mathbf{k} \to 0} \omega(\mathbf{k}) \neq 0$

21

Non-hydro modes can relax slower than expansion of fluid, causing the system to jump out of local near-equilibrium

Divergence of "perturbative" hydrodynamic series

0+1D Bjorken flow
$$\epsilon(au) = rac{1}{ au^{4/3}} \sum_{n=0}^{\infty} rac{a_n}{ au^{2n/3}}, \ a_n \sim n! \ {\rm as} \ n \gg 1$$
 (1)

Heller, Janik, Witaszczyk, PRL 110 (2013) 211602

Borel Resummation: 0+1D Bjorken Expansion

 a_n for n > 0 come from viscous + other transport corrections 0+1D Bjorken flow $\epsilon(\tau) = \frac{1}{\tau^{4/3}} \sum_{n=0}^{\infty} \frac{a_n}{\tau^{2n/3}}, a_n \sim n!$ as $n \gg 1$ Use a Borel resummation of the series:

$$\left(\frac{1}{\tau^{2/3}}\right)^n \longleftrightarrow \frac{1}{n!} \int_0^\infty d\xi \, e^{-\xi} \left(\frac{\xi}{\tau^{2/3}}\right)^n$$

Heller, Spaliński, PRL 115 (2015) 072501

Convergent series:

$$\tilde{\epsilon}(\tau,\xi) = \frac{1}{\tau^{4/3}} \sum_{n=0}^{\infty} \frac{a_n}{n!} \frac{\xi^n}{\tau^{2n/3}}$$
(2)

<ロト < @ ト < E ト < E ト E の < ?? 23</p>

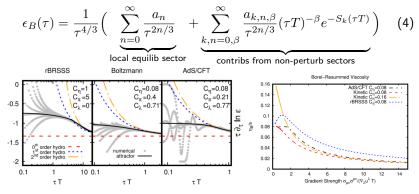
Oh no!

Need to invert Borel transform: Heller, Spaliński, PRL 115 (2015) 072501

$$\epsilon_B(\tau) = \int_0^\infty d\xi e^{-\xi} \tilde{\epsilon}(\tau,\xi) \tag{3}$$

But $\tilde{\epsilon}(\tau,\xi)$ has singularities on real axis that must be subverted via:

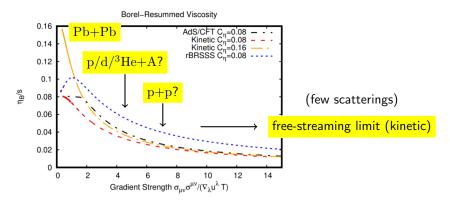
- 1. analytic continuation (e.g. via Padé approximation)
- 2. plus some choice of deformation of the contour $[0,\infty)$



 MEANING: missing UV physics that is not captured at any order in perturbative gradient expansion

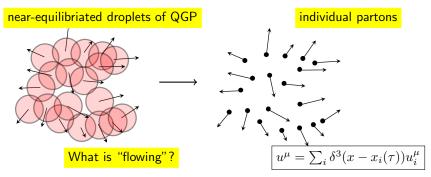
The hydro attractor

But ambiguities from all singularities must cancel to give finite, real result Heller, Spaliński, PRL 115 (2015) 072501


Trans-series solution (Écalle, 1980)

Romatschke, PRL 120 (2018) 012301

Decreased effective shear viscosity with large gradients


- 1. Decreased shear viscosity far from equilibrium
- 2. Consistent with escape mechanism in the special case of microscopic kinetic transport (but not in holographic $\mathcal{N} = 4$ super Yang Mills)

Romatschke, PRL 120 (2018) 012301

Physical meaning: reorganization of collective d.o.f.

1. Attractor interpolates between free-streaming (or some other non-hydrodynamic stage) limit and near-thermal-equilibrium limit

Comments

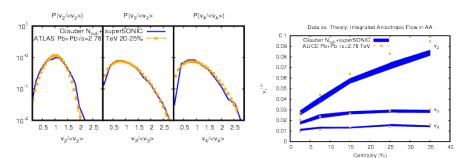
▶ Non-perturbative corrections $e^{-S_k(\tau T)}$ look like instanton corrections e^{-S_k/g^2} in non-perturbative QFT... origin from hydro path integrals?

Thanks!

2nd International Workshop on Collectivity in Small Systems, Wuhan

æ

・ロト ・個ト ・モト ・モト



Backup slides

Are MC Glauber models justified?

Data vs Theory: vn Distributions in AA

$P(v_n)$'s are reproduced by Monte Carlo Glauber in Pb+Pb collisions with N_{coll} scaling of $\frac{d^3E}{dYd^2\mathbf{x}_{\perp}}$:

Romatschke, Romatschke (2017) 1712.05815