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Questions

1. How to determine the properties of a physics system with observations of the final states?

2. How accurate are our statements about its properties?
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A schematic example: extract one parameter from one observation

A system with a state xtrue leads to an observation y . y = fphy (xtrue).

Measurement of y comes with uncertainty → Exp uncertainty yexp ± σexp.

Our model fM of the true function fphy is imperfect → Theory uncertainty σth.

A Bayesian point of view

What is the probability of x to be the truth,

P(x = xtrue |fM , yexp) ∝ Likelihood(fM(x) = yexp|fM , x)× Prior(x)

log Likelihood = −(fM(x)− yexp)2

2σ2
+ C , σ2 = σ2

exp + σ2
th (+ · · · )

Bayes’ theorem P(A|B) = P(B|A)P(A)/P(B).
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A much more complex situation for heavy ion physics

More ...

Bulk Viscosity

Shear viscosity

Pre-eq flow

Nucleon shape

Nucleon size

Parameters Model
very complex

Multiplicity

Particle yields

mean-pT , fluct-pT

Flows v2, v3, ...

Observables

⊗ Systems ⊗ Beam energies

Large
Small

200 GeV
2.76 TeV
5.02 TeV
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Nucleon shape

Nucleon size

Parameters Model
very complex

Multiplicity

Particle yields

mean-pT , fluct-pT

Flows v2, v3, ...

Observables

⊗ Systems ⊗ Beam energies

Large
Small

200 GeV
2.76 TeV
5.02 TeV

Given parameters and predict observables
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A much more complex situation for heavy ion physics

More ...

Bulk Viscosity

Shear viscosity

Pre-eq flow

Nucleon shape

Nucleon size

Parameters Model
very complex

Multiplicity

Particle yields

mean-pT , fluct-pT

Flows v2, v3, ...

Observables

⊗ Systems ⊗ Beam energies

Large
Small

200 GeV
2.76 TeV
5.02 TeV

Infer parameters by comparing to data
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Work through a real example: extract η/s, ζ/s from AA collisions @LHC
Physics models: a multistage hybrid simulation.
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, τ
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1
fm
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︷ ︸︸ ︷Hydro expansion, 1 . τ . 10 fm/c

︷ ︸︸ ︷Hadronic afterburner 10 . τ . 100 fm/c

Pa
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−−
−−
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−−
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*Thesis work by JE Bernhard arXiv:1804.06469.
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Physics model: TRENTo initial condition

Prepare two nuclei
nucleon positions sampled

from a Woods-Saxon function

Determine binary collisions
Pcoll(b) = 1 − exp(−σeffTpp(b))
σeff fixed by fitting σpp, inel
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Physics model: TRENTo initial condition

Prepare two nuclei
nucleon positions sampled

from a Woods-Saxon function

Determine binary collisons
Pcoll(b) = 1 − exp(−σeffTpp(b))
σeff fixed by fitting σpp, inel

Calculate participant density

TA,B(x) =
∑

i∈Npart

γiρ(x − xi ).
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Physics model: TRENTo initial condition

Prepare two nuclei
nucleon positions sampled

from a Woods-Saxon function

Determine binary collisons
Pcoll(b) = 1 − exp(−σeffTpp(b))
σeff fixed by fitting σpp, inel

Calculate participant density

TA,B(x) =
∑

i∈Npart

γiρ(x − xi ).

Entropy deposition
Generalized mean ansatz:

dS

τdx2
⊥dηs

∝
(
T p
A + T p

B

2

)1/p

.
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Physics model: TRENTo initial condition

Prepare two nuclei
nucleon positions sampled

from a Woods-Saxon function

Determine binary collisons
Pcoll(b) = 1 − exp(−σeffTpp(b))
σeff fixed by fitting σpp, inel

Calculate participant density

TA,B(x) =
∑

i∈Npart

γiρ(x − xi ).

Entropy deposition
Generalized mean ansatz:

dS

τdx2
⊥dηs

∝
(
T p
A + T p

B

2

)1/p

.

Features

Interpolates a family of entropy deposition
mappings at mid-rapidity.

Gaussian proton shape.

Parameters: nucleon width (w),
fluctuation (σ), entropy deposition (p).
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Physics model: pre-equilibrium free streaming and hydro

Pre-equilibrium stage

Before τfs free stream initial energy density and match it to hydrodynamic Tµν at τ = τfs.

Shall use more realistic model in the future such as an effective kinetic theory.

A tunable parameter τfs.

Hydrodynamics

2+1D relativistic viscous hydrodynamics (OSU hydro).

EoS: interpolate between HRG and Lattice results (HotQCD).

Parametrization of η/s and ζ/s

η

s
= (η/s)min + (η/s)slope(T − Tc)

(
T

Tc

)(η/s)curv

,
ζ

s
=

(ζ/s)max(
T−T0

(ζ/s)width

)2
+ 1

.
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Particularization and hadronic rescattering

Particularization: frzout by JE Bernhard

Hadrons are sampled from fluid cell with Cooper-Frye prescription at T = Tsw.

Include the effect of hadron finite widths.

Non-δf type shear and bulk corrections.

Parameter: particularization temperature (Tsw).

Hadronic rescattering

An Ultra-relativistic Quantum Molecular Dynamics model (UrQMD).
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A summary of parameters

Group Parameters Explanation

IC p Entropy deposition parameter
Norm(s) Overall entropy normalizations
σ fluct Gamma fluctuation std of N-N collision
w [fm] Gaussian nucleon width
d min [fm] Nucleon-nucleon minimum distance in nucleus

Pre-eq τfs [fm/c] Freestreaming time

QGP η/s min value of η/s(Tc)
η/s slope [GeV−1] slope parameter of η/s(T )
η/s curv curvature η/s(T )
ζ/s max max value of ζ/s(T )
ζ/s width [GeV] width parameter of ζ/s(T )
ζ/s T0 [GeV] peak temperature of ζ/s(T )

Particularization T switch [GeV] switching temperature from hydro to UrQMD.

Weiyao Ke (Duke Univeristy) Global Bayesian Analysis June 14, 2018 9 / 34



A sophisticated Bayesian parameter estimation

Input parameters
parameter space ~p

Computing models
MB event-by-event simulations

Physics models
Initial stages, hydro, transport, etc

Experimental data
Yield, flow, 〈pT 〉, etc

Gaussian process emulator
surrogate model

Bayes’ Theorem
Posterior = Likelihood×Prior

Likelihood(~p) ∝ e−
1
2 (yexp−y~p)

T
Σ−1(yexp−y~p)

Markov chain Monte Carlo
Maginalize onto interested parameters

Posterior distribution
quantitative knowledge of each

parameter w/ uncertainty
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Calibration to LHC 2.76 TeV and 5.02 TeV Pb+Pb data (new!)

Sample design input parameters

0.00 0.05 0.10 0.15 0.20
/s min
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1 ]

For a high dimensional (n = 14) space, grid
interpolate is impossible N ∼ O(10n).

A smarter sampling technique: Latin Hyper cube
sampling.

1. Optimized random samples.

2. Maximize the mini. dist. between pairs of points.

3. The marginalization on any parameter is uniform.

4. N ∼ O(10× n) for smooth function over the space.

Perform full model calculation on design points.
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Calibration to LHC 2.76 TeV and 5.02 TeV Pb+Pb data (new!)

Surrogate model: Gaussian process emulator

After full model evaluation ( ~Yi ) on design points (~xi ): ~xi −→ ~Yi .

How to get arbitrary ~Y (~x) for “arbitrary” parameters ~x?

Non-parametric interpolation through Gaussian process emulator.

A mean prediction + interpolation uncertainty.
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Input

2

1

0
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2

O
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t

Random functions

0 1 2 3 4
Input

Conditioned on
a few noiseless points

Mean prediction
Uncertainty
Training data

0 1 2 3 4
Input

Conditioned on
many noisy points
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Calibration to LHC 2.76 TeV and 5.02 TeV Pb+Pb data (new!)

Validate the performance of Gaussian process emulator

Predict observables with newly generated inputs and compare with actually calculation.

Validate that the trained emulator predictions reproduce the dependence of ~Y on ~x .

Emulator do have uncertainty!
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Calibration to LHC 2.76 TeV and 5.02 TeV Pb-Pb data (New)
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Calculation of design points (prior)

500 design points.

Observables:
multiplicity, transverse energy, p, π,K yield and
mean-pT , mean-pT EbE fluctuation, v2, v3, v4.

Parameter design ranges are wide enough to spread
over all data points.

The likelihood function

∆y = (yexp − yp)

log Likelihood = C − 1

2
det Σ− 1

2

(
Σ−1

)
ij

∆yi∆yj .

Σ = σ2
stat + σ2

sys + σ2
GP + σ2

model
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Calibration to LHC 2.76 TeV and 5.02 TeV Pb-Pb data (New)
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After model-to-data comparison (posterior, from
emulator)

After comparing to experimental data, the emulator
can predict observables from the calibrated
distribution of parameters.

Achieve a global agreement with data.
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Parameters calibration
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Diagonal: single parameter
distributions (integrate over N − 1).

Off diagonal: pairwise correlations
(integrate over N − 2).

Marginalization of the other N − 1
parameters concentrates on the single
parameter with uncertainties from
other parts of the model folded in.
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Calculation using a high-likelihood parameter set
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A global ±10% level of description.
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Focus on the initial condition

1.0 0.5 0.0 0.5 1.0
p
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EKRT /

IP-Glasma
Wounded
nucleon

0.006+0.078
0.078

Knowledge on initial entropy deposition

Support the eccentricity scaling (ε2,3 as functions of b) given by saturation physics
based/motivated initial condition models.
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Focus on transport properties
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Focus on transport properties
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Knowledge on η/s

Minimum around 0.85± 0.25.

Suggest rising trend of η/s.
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Knowledge on ζ/s

The need of a non-zero ζ/s.

Peaking T0 is not well constrained.
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Extend to small systems (from a final state point of view)

Collective features observed in small systems

Long range pseudorapidity two-particle correlation.

Finite v2, v3 from multi-particle correlations.

Competing of two pictures,
I Initial state effect.
I Final state effect

1. Pressure driven and the formation of QGP in high-multiplicity events.
2. Escape mechanism.

Study small system from a final state perspective

Developments of TRENTo towards a more realistic description of small system.

Perform analysis on both pA and AA → Can we describe both in a single framework?

Can we study other observables that may help to distinguish IS and FS effects?
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Developments in TRENTo for studying possible final state effects

The TRENTo family

Original: round proton, boost-invariant
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Developments in TRENTo for studying possible final state effects

The TRENTo family

Original: round proton, boost-invariant −→ Add proton shape fluctuation

A recent simultaneous calibration on both p-Pb and Pb-Pb collisions (2+1D).
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Developments in TRENTo for studying possible final state effects

The TRENTo family

Original: round proton, boost-invariant −→ Add proton shape fluctuation
↓ ↓

Add local rapidity dependence −→ Combine both features (in progress)

A recent simultaneous calibration on both p-Pb and Pb-Pb collisions (2+1D).

Opportunity of calibration using 3+1D simulations and predicts for possible final state
effect in small systems.
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Adding proton shape fluctuation to TRENTo

Subnucleonic fluctuation

In p-A collisions, initial geometry is sensitive to proton subnucleonic fluctuations.

Extend the default Gaussian round proton in TRENTo by adding subnucleon constituents.

Proton degrees of freedom

A proton width parameter.

Width of Gaussian constituents.

Number of constituents.
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Adding proton shape fluctuation to TRENTo

Collision of Gaussian round proton

Proton-proton collision probability at fixed b,

Pcoll(b) = 1− exp(−σeffTpp(b)),Tpp(b) =

∫
dx2
⊥ρ(x + b/2)ρ(x − b/2)

σeff fixed by requiring σpp, inel =
∫
d~b2Pcoll(b).

Collision of fluctuating proton

Proton-proton Pcoll determined from constituent collisions,

Pcoll(b) =

〈
1−

#∏
i ,j=1

[1− Pcoll(bij)]

〉
xi ,xj given b
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Calibration on p-Pb and Pb-Pb systems simultaneously
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Calculation of design points (Prior)

Observables:
Pb+Pb: multiplicity, v2, v3, v4

p+Pb: multiplicity, v2, v3, mean-pT

The fluctuating proton can generate huge
eccentricity fluctuations.

Prior range well-cover the data from both systems.
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Calibration on p-Pb and Pb-Pb systems simultaneously
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After compare to data (Posterior, from emulator)

The calibrated model emulator very well predicts
the observable for both p-A and A-A.
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Parameters calibrated on pA, AA
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Marginalized posterior distribution

What does it say about initial
condition with proton fluctuations.

Are the extracted transport
coefficients different from using only
AA data?
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The constrained TRENTo with proton fluctuations
Calibrate on Pb+Pb at 2.76 TeV and 5.02 TeV

1.0 0.5 0.0 0.5 1.0
p

KLN
EKRT /

IP-Glasma
Wounded
nucleon

0.006+0.078
0.078

Calibrate on p+Pb and Pb+Pb at 5.02 TeV

1.0 0.5 0.0 0.5 1.0
p

KLN
EKRT /

IP-Glasma
Wounded
nucleon

0.020+0.146
0.156

TRENTo parameters

The analysis still prefers entropy
deposition with p = 0.

No particular preference of # of
constituents. But a round proton (n = 1
case) is disfavored.

The joint distribution of constituent width
and its sampling radius within a proton is
well constrained.

Need to check the resulting proton
eccentricities.
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The constrained TRENTo with proton fluctuations
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Do we need a different η/s, ζ/s to describe p-A?

150 200 250 300
Temperature [MeV]

0.0

0.1

0.2

0.3

0.4

/s

1/41/4

Median and 90% credible region

p-Pb, Pb-Pb 5.02 TeV
Pb-Pb 2.76, 5.02 TeV

150 200 250 300
Temperature [MeV]

0.00
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0.08

/s

Median and 90% credible region

p-Pb, Pb-Pb 5.02 TeV
Pb-Pb 2.76, 5.02 TeV

Comparing transport properties from two calibration.

The η/s, ζ/s that describe pA and AA @ 5.02TeV is consistent with those describing a
lot more AA observables @ 2.76 and 5.02 TeV.

No extra handle on η/s, ζ/s by including pA.
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How can a 3+1D simulation help us understand the nature of pA

Looking at event-plane decorrelations

In Pb-Pb collisions, the event-planes decorrelate over pseudorapidity due to initial
participant plane twisting and fluctuations.

If medium in pA also undergoes pressure driven expansion, event-plane decorrelation
should be described in the same framework as AA.

In an initial state approach, the decorrelation has a different origin.
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Extending TRENTo (round proton version) to finite rapidity

dS

dx2
⊥dy

∝ s0(~x⊥, y = 0) × f (y , x⊥).

TRENTo × rapidity profile

f (y , x⊥) has three degrees of freedom (first 3 y -moments):

mean µ(x⊥), std σ(x⊥), skewness γ(x⊥)

f (y , x⊥) ∝ F−1 exp

{
iµk − 1

2
(σk)2 − i

6
γ(σk)3 + ...

}
µ, σ, γ parametrized in nuclear thickness functions TA(x⊥),TB(x⊥).

mean (µ) std (σ) absolute or relative-skew (γ)
µ0
2 log TA

TB
σ0 γ0(TA − TB) or γ0

TA−TB
TA+TB
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Extending TRENTo (round proton version) to finite rapidity

Calibrated to p-Pb and Pb-Pb

This calibration did not include proton substructure.

Parameters constrained by charged particle pseudorapidity density of Pb-Pb and p-Pb and
event-by-event psuedorapidity fluctuation in Pb-Pb.
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Rapidity evolution in the presence of proton shape-fluctuation.

ηs= −4.0 ηs= −2.0 ηs=0.0 ηs=2.0 ηs=4.0

How much of initial geometry info gets transformed into final state particles.

TRENTo → 3+1D Free streaming → 3+1D viscous hydrodyanmics → UrQMD.
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Summary

Example application: Gravitational waves

DataLIGO gravitational wave strain

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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Posterior distributionBlack hole masses

entering our sensitive band [85,86] and could not have
formed from an asymptotically spin antialigned binary.
We could exclude those systems if we believe the binary is
not precessing. However, we do not make this assumption
here and instead accept that the models can only extract
limited spin information about a more general, precessing
binary.
We also need to specify the prior ranges for the ampli-

tude and phase error functions δAkðf; ~ϑÞ and δϕkðf; ~ϑÞ, see
Eq. (5). The calibration during the time of observation of
GW150914 is characterized by a 1-σ statistical uncertainty
of no more than 10% in amplitude and 10° in phase [1,47].
We use zero-mean Gaussian priors on the values of the
spline at each node with widths corresponding to the
uncertainties quoted above [48]. Calibration uncertainties
therefore add 10 parameters per instrument to the model
used in the analysis. For validation purposes we also
considered an independent method that assumes frequency-
independent calibration errors [87], and obtained consistent
results.

III. RESULTS

The results of the analysis using binary coalescence
waveforms are posterior PDFs for the parameters describ-
ing the GW signal and the model evidence. A summary is
provided in Table I. For the model evidence, we quote
(the logarithm of) the Bayes factor Bs=n ¼ Z=Zn, which
is the evidence for a coherent signal hypothesis divided
by that for (Gaussian) noise [5]. At the leading order, the
Bayes factor and the optimal SNR ρ ¼ ½PkhhMk jhMk i�1=2 are
related by lnBs=n ≈ ρ2=2 [88].
Before discussing parameter estimates in detail, we

consider how the inference is affected by the choice of
the compact-binary waveform model. From Table I, we see
that the posterior estimates for each parameter are broadly
consistent across the two models, despite the fact that
they are based on different analytical approaches and that
they include different aspects of BBH spin dynamics. The
models’ logarithms of the Bayes factors, 288.7� 0.2 and
290.3� 0.1, are also comparable for both models: the data
do not allow us to conclusively prefer one model over the
other [89]. Therefore, we use both for the Overall column
in Table I. We combine the posterior samples of both
distributions with equal weight, in effect marginalizing
over our choice of waveform model. These averaged results
give our best estimate for the parameters describing
GW150914.
In Table I, we also indicate how sensitive our results are

to our choice of waveform. For each parameter, we give
systematic errors on the boundaries of the 90% credible
intervals due to the uncertainty in the waveform models
considered in the analysis; the quoted values are the 90%
range of a normal distribution estimated from the variance
of results from the different models. (If X were an edge of a

credible interval, we quote systematic uncertainty
�1.64σsys using the estimate σ2sys¼ ½ðXEOBNR−XOverallÞ2þ
ðXIMRPhenom−XOverallÞ2�=2. For parameters with bounded
ranges, like the spins, the normal distributions should
be truncated. However, for transparency, we still quote
the 90% range of the uncut distributions. These numbers
provide estimates of the order of magnitude of the potential
systematic error). Assuming a normally distributed error is
the least constraining choice [90] and gives a conservative
estimate. The uncertainty from waveform modeling is less
significant than the statistical uncertainty; therefore, we are
confident that the results are robust against this potential
systematic error. We consider this point in detail later in the
Letter.
The analysis presented here yields an optimal coherent

SNR of ρ ¼ 25.1þ1.7
−1.7 . This value is higher than the one

reported by the search [1,3] because it is obtained using a
finer sampling of (a larger) parameter space.
GW150914’s source corresponds to a stellar-mass BBH

with individual source-frame masses msource
1 ¼ 36þ5

−4M⊙
and msource

2 ¼ 29þ4
−4M⊙, as shown in Table I and Fig. 1.

The two BHs are nearly equal mass. We bound the mass
ratio to the range 0.66 ≤ q ≤ 1 with 90% probability. For
comparison, the highest observed neutron star mass is
2.01� 0.04M⊙ [91], and the conservative upper-limit for

FIG. 1. Posterior PDFs for the source-frame component masses
msource

1 and msource
2 . We use the convention that msource

2 ≤ msource
1 ,

which produces the sharp cut in the two-dimensional distribution.
In the one-dimensional marginalized distributions we show the
Overall (solid black), IMRPhenom (blue), and EOBNR (red)
PDFs; the dashed vertical lines mark the 90% credible interval
for the Overall PDF. The two-dimensional plot shows the
contours of the 50% and 90% credible regions plotted over a
color-coded PDF.
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Summary

Global Bayesian model-to-data comparison is a powerful quantitative tool to learn QGP
properties from experimental data.

It has been successfully applied to large systems to infer initial condition model and QGP
transport coefficients.

Pb-Pb and p-Pb collisions can be simultaneously described at mid-rapidity by including
proton shape fluctuations.

Looking at event-plane decorrelations in future 3+1D analysis.
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Outlooks

Bayes factor

A quantitative measurement of model performance.

Can be used to select a better-performing model.

Introduce natural penalty for over complex model (too many parameters).

How to calculate:

P(M1)

P(M2)
=

∫
P(~p|Exp,M1)d~p∫
P(~p|Exp,M2)d~p

It has been applied to comparing hydro+UrQMD v.s. hydro + partial chemical
equilibrium EoS.
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16O + 16O

Estimate fluid cell temperature distribution at τ = τhydro using TRENTo initial condition.
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