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Questions

1. How to determine the properties of a physics system with observations of the final states?

2. How accurate are our statements about its properties?
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A schematic example: extract one parameter from one observation

A system with a state X leads to an observation y. y = fopy (Xirue ).
@ Measurement of y comes with uncertainty — Exp uncertainty Ye,, £ 0exp-
@ Our model fy of the true function f,4, is imperfect — Theory uncertainty o.

A Bayesian point of view
@ What is the probability of x to be the truth,

P(x = X¢rue|fm, Yexp) o< Likelihood(fa(x) = Yexp|fm, x) x Prior(x)

fam(x) — 2
() = Yew)” +C,o° =00+ 0o (+:

log Likelihood = -— 752

o Bayes' theorem P(A|B) = P(B|A)P(A)/P(B).
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A much more complex situation for heavy ion physics

Parameters Observables

Nucleon size

Nucleon shape Flows vy, vs, ...

mean-pT, fluct-pr

Pre-eq flow
® Systems ® Beam energies
Shear viscosity Particle yields Large 200 GeV
Small 2.76 TeV
5.02 TeV

Bulk Viscosity Multiplicity

More ...
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A much more complex situation for heavy ion physics

Parameters Model Observables
very complex

Nucleon size

Nucleon shape Flows vy, vs, ...

mean-pT, fluct-pr

Pre-eq flow
® Systems ® Beam energies

Shear viscosity Particle yields Large 200 GeV

Small 2.76 TeV

Bulk Viscosity Multiplicity 5.02 TeV

More ...

Given parameters and predict observables D
Q@
Theory €
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A much more complex situation for heavy ion physics

Parameters Model Observables
very complex

Nucleon size

Nucleon shape Flows vy, vs, ...

mean-pT, fluct-pr

Pre-eq flow
® Systems ® Beam energies

Shear viscosity Particle yields Large 200 GeV

Small 2.76 TeV

Bulk Viscosity Multiplicity 5.02 TeV

More ...

Infer parameters by comparing to data D
Q@
Theory €
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Work through a real example: extract /s, (/s from AA collisions @LHC
Physics models: a multistage hybrid simulation.

Ox

*Thesis work by JE Bernhard arXiv:1804.06469. @
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Physics model: TRENTo initial condition

Prepare two nuclei
nucleon positions sampled
from a Woods-Saxon function
!
Determine binary collisions
Pcoll(b) =1- exp(_aefprP(b))
oef fixed by fitting opp inel
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Physics model: TRENTo initial condition

Prepare two nuclei
nucleon positions sampled
from a Woods-Saxon function
!

Determine binary collisons
Pcou(b) =1- exp(—aefprp(b))
oef fixed by fitting opp inel

l

Calculate participant density

Tag(x) = Z Yip(x = X;).

ie Npart
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Physics model: TRENTo initial condition

Prepare two nuclei
nucleon positions sampled
from a Woods-Saxon function
!

Determine binary collisons
Peoi(b) = 1 — exp(—0est Tpp(b))
oenr fixed by fitting opp inel

l

Calculate participant density

Tas(x)= > 7ip(x —x).

i€ Npart

Entropy deposition

Generalized mean ansatz:

2

dei dns
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Physics model: TRENTo initial condition

Entropy deposition

Prepare two nuclei Generalized mean ansatz:
nucleon positions samplec.ﬂ — i —_ 1/p
from a Woods-Saxon function x A B .

) deidns 2

Determine binary collisons
Peoi(b) = 1 — exp(—0est Tpp(b))
oe fixed by fitting opp, inel Features
i @ Interpolates a family of entropy deposition

Calculate participant density mappings at mid-rapidity.

@ Gaussian proton shape.

Ta(x) = Z Yip(x = xi). @ Parameters: nucleon width (w),
i€ Npart fluctuation (o), entropy deposition (p).
D
@}
K
Theory €
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Physics model: pre-equilibrium free streaming and hydro

Pre-equilibrium stage
@ Before 7, free stream initial energy density and match it to hydrodynamic T at 7 = 7.
@ Shall use more realistic model in the future such as an effective kinetic theory.

@ A tunable parameter 7.

Hydrodynamics
@ 2+1D relativistic viscous hydrodynamics (OSU hydro).
@ EoS: interpolate between HRG and Lattice results (HotQCD).

@ Parametrization of n/s and (/s

s (( T-To )2_1_1'

¢/S)width

(n/9)cury
Z = (n/s)min + (n/s)slope(T — Tc) (Tlc) , ﬁ _ (C/s)max

IF:

Theory €
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Particularization and hadronic rescattering

Particularization: frzout by JE Bernhard

@ Hadrons are sampled from fluid cell with Cooper-Frye prescription at T = Tgy.

@ Include the effect of hadron finite widths.
@ Non-df type shear and bulk corrections.

o Parameter: particularization temperature ( Tgy).

Hadronic rescattering
@ An Ultra-relativistic Quantum Molecular Dynamics model (UrQMD).

\
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A summary of parameters

Group Parameters Explanation
IC p Entropy deposition parameter
Norm(s) Overall entropy normalizations
o fluct Gamma fluctuation std of N-N collision
w [fm] Gaussian nucleon width
d min [fm] Nucleon-nucleon minimum distance in nucleus
Pre-eq Tts [fm/c] Freestreaming time
QGP 1/s min value of n/s(T¢)
n/s slope [GeV™1] slope parameter of 1/s(T)
n/s curv curvature n/s(T)
(/s max max value of (/s(T)

(/s width [GeV]
(/s To [GeV]

width parameter of (/s(T)
peak temperature of ¢/s(T)

Particularization T switch [GeV]

switching temperature from hydro to UrQMD.

D
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A sophisticated Bayesian parameter estimation

Experimental data

Physics models
Yield, flow, (pr), etc

Input parameters
Initial stages, hydro, transport, etc

parameter space p
\ — S
Bayes’ Theorem

oy Com|l))utmg m(.)dells . Posterior = Likelihood >§Prior
event-by-event simulations LlclTeed(F) o e—%(yexp—yﬁ) Z—l(yexp_yﬁ)

Markov chain Monte Carlo
Maginalize onto interested parameters

'

Posterior distribution
quantitative knowledge of each
parameter w/ uncertainty

Gaussian process emulator
surrogate model
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Calibration to LHC 2.76 TeV and 5.02 TeV Pb+Pb data (new!)

Sample design input parameters

@ For a high dimensional (n = 14) space, grid
interpolate is impossible N ~ O(107).

@ A smarter sampling technique: Latin Hyper cube
sampling.

1. Optimized random samples.

2. Maximize the mini. dist. between pairs of points.
3. The marginalization on any parameter is uniform.
4

. N ~ O(10 x n) for smooth function over the space.

n/s slope [GeV™1]
o o - N w N w o ~N ©

00 005 010 015 020 @ Perform full model calculation on design points.
n/s min

QT i
Theory €
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Calibration to LHC 2.76 TeV and 5.02 TeV Pb+Pb data (new!)

Surrogate model: Gaussian process emulator

o After full model evaluation (Y;) on design points (X;):

o How to get arbitrary Y(X) for “arbitrary” parameters X7

xX; — Y.

@ Non-parametric interpolation through Gaussian process emulator.

@ A mean prediction + interpolation uncertainty.

Random functions

Conditioned on
a few noiseless points

Conditioned on
many noisy points

2 4
i
=] L
o / %
g o a4 % e ° o R
8 M 2 | Mean prediction TS L i T, e
. il i
Uncertainty TR R
¢ Training data
T T T T T T T T T 1
0 1 2 3 1 2 3 1 2 3 4
Input Input Input
.
o 0T



Calibration to LHC 2.76 TeV and 5.02 TeV Pb+Pb data (new!)

Validate the performance of Gaussian process emulator
@ Predict observables with newly generated inputs and compare with actually calculation.
o Validate that the trained emulator predictions reproduce the dependence of Y on X.
@ Emulator do have uncertainty!

1200 4 dNcp/dn 20-30% . 34
1000 - 21
A K]
5 g 1] [ 90 z
£ 800 8 53
i }g 04 50 §
S 600 g [ 252
§ = -14 o
o —_— w
S 10
400 oy
_3 .
200 1

200 400 600 800 1000 1200
Emulator prediction

v
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Calibration to LHC 2.76 TeV and 5.02 TeV Pb-Pb data (New)

Pb-Pb 2.76 TeV Pb-Pb 5.02 TeV

3
)

Calculation of design points (prior)

AR - @ 500 design points.

K \j @ Observables:

S e R S multiplicity, transverse energy, p, 7, K yield and
mean-p71, mean-p7 EbE fluctuation, v», v3, v4.

?

dNp/dn, dN/dy, dEr/dn [GeV]
3 5 3
n F
5 &
-
SPIRIA

-3

1d ueap

@ Parameter design ranges are wide enough to spread
over all data points.

=
8

The likelihood function

suonenyony 4d ueajy

°
8

Ay = (Yexp— ¥p)

’ g 3 . 1 1 1
éa - logLikelihood = C— ~detT — (571, AyAy;.
: I . ) _ 2 2 2 2
Centrality % Centrality % z — Ustat + Usys + o QP _|_ O-mo del
S = E
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Calibration to LHC 2.76 TeV and 5.02 TeV Pb-Pb data (New)

dNe/dn, dN/dy, dEr/dn [GeV]

Pb-Pb 2.76 TeV Pb-Pb 5.02 TeV

\ w \ After model-to-data comparison (posterior, from
\\\ o \ « ¢ emulator)
\« " \ o After comparing to experimental data, the emulator
) E S — can predict observables from the calibrated

O — distribution of parameters.

@ Achieve a global agreement with data.

=
=
1dueapy

°

»
3
S
8
g
°
8
°
3
&
o
3
®
3

o o o
g 8 8
suonenyonyy 1d ueay

0 20 P P 80 0 20 P & 8
S 010 pam————
” v, ~ vz §
2
005 2
Y A— ettt 15 H
[sm— [ eom————, D
000 7]
0 20 2 6 0 o 20 40 & 8
Centrality % Centrality % I(
Theory €
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Parameters calibration

Marginalized posterior distribution

@ Diagonal: single parameter
distributions (integrate over N — 1).

o Off diagonal: pairwise correlations
(integrate over N — 2).

@ Marginalization of the other N — 1
parameters concentrates on the single
parameter with uncertainties from
other parts of the model folded in.

Dy

Theory €

Weiyao Ke (Duke Univeristy) Global Bayesian Analysis June 14, 2018 15 / 34



Calculation using a high-likelihood parameter set

Yields

10°

10*

10°

102

dNn/dn, dN/dy, dEr/dn [GeV]

10t

Ratio
N
o

(pr) [GeV]

0.15

Flow cumulants

— ¢ 276TeV
¢ 5.02TeV

0 20 40 60
—_—— T % +10%
80 80
=
Q
<
=
Q
w
: : . 000 : : . .
0 20 40 60 80 20 40 60 80
11
2
= 10
0% & 09 4 +10%
0 20 40 60 80 0 20 40 60 80

Centrality %

Centrality %

A global +10% level of description.
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Focus on the initial condition

0.00610978

EKRT / Wounded
KLN IP-Glasma nucleon
< T — = T T I T T T >
-1.0 -0.5 0.0 0.5 1.0
p

Knowledge on initial entropy deposition

@ Support the eccentricity scaling (e2,3 as functions of b) given by saturation physics
based/motivated initial condition models.

]
I K
Theory €
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Focus on transport properties

n/s slope

+0.026 +0.040
0.2 0.085%5,023 0107 0-037Z5023
£ &
E 01 € 005
= hvs
0.0 0.00 | +0.045
8 4 0. 83+0 83 010 B 0. 029 0.026
=
= TS
S " T L 0.05 4 1
8 =
— N -
0.00 -
v . v " +0.023
° L L -0378% 0200] ] 01770021
o
2 2 0175 ]
w0 9,
=
0.150 |
-1 i ! i i
, : .4 . . 000 005 010 000 005 010 o N
_ ; rf) '\ rLO
00 01 . 20 4 8 -1 0 1 Z/s max /s width
n/s min n/s slope n/s crv [GeV] Z/s To D
[GevY] [Gevl _ [
Theorg E
ERT- = = =
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Focus on transport properties

0.4 1 0.08 A
—— Posterior median —— Posterior median
90% credible region 90% credible region
0.3 A 0.06 -
L 021 5 0.04 1
0.1 / 0.02 -
1/4n
0.0 T T 1 0.00 T T 1
150 200 250 300 150 200 250 300
Temperature [MeV] Temperature [MeV]
Knowledge on 7/s Knowledge on (/s
@ Minimum around 0.85 & 0.25. @ The need of a non-zero (/s.
@ Suggest rising trend of 7/s. @ Peaking Ty is not well constrained.
o]
Q)
K
Theory €
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Extend to small systems (from a final state point of view)

Collective features observed in small systems
@ Long range pseudorapidity two-particle correlation.

e Finite v», v3 from multi-particle correlations.
o Competing of two pictures,
Initial state effect.
Final state effect
1. Pressure driven and the formation of QGP in high-multiplicity events.
2. Escape mechanism.

Study small system from a final state perspective
@ Developments of TRENTo towards a more realistic description of small system.

@ Perform analysis on both pA and AA — Can we describe both in a single framework?

@ Can we study other observables that may help to distinguish IS and FS effects?

Y

Theory €
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Developments in TRENTo for studying possible final state effects

The TRENTo family

Original: round proton, boost-invariant

Global Bayesian Analysis
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Developments in TRENTo for studying possible final state effects

The TRENTo family
Original: round proton, boost-invariant —— Add proton shape fluctuation

@ A recent simultaneous calibration on both p-Pb and Pb-Pb collisions (2+1D).
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Developments in TRENTo for studying possible final state effects

The TRENTo family

Original: round proton, boost-invariant

1
Add local rapidity dependence

!

— Add proton shape fluctuation

— Combine both features (in progress)

@ A recent simultaneous calibration on both p-Pb and Pb-Pb collisions (2+1D).

@ Opportunity of calibration using 341D simulations and predicts for possible final state

effect in small systems.

Weiyao Ke (Duke Univeristy) Global Bayesian Analysis
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Adding proton shape fluctuation to TRENTo

Subnucleonic fluctuation
@ In p-A collisions, initial geometry is sensitive to proton subnucleonic fluctuations.

@ Extend the default Gaussian round proton in TRENTo by adding subnucleon constituents.

Samplingradius  Constituent width ~ Constituent number

()
()

Weiyao Ke (Duke Univeristy)

Proton degrees of freedom
@ A proton width parameter.
o Width of Gaussian constituents.

@ Number of constituents.
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Adding proton shape fluctuation to TRENTo

Collision of Gaussian round proton
@ Proton-proton collision probability at fixed b,

Peon(b) = 1 — exp(—0est Tpp(b)), Tpp(b) = /dXiP(X + b/2)p(x — b/2)

o oo fixed by requiring opp, inel = dEzPCOH(b).

Collision of fluctuating proton

@ Proton-proton P,y determined from constituent collisions,

Pcoll(b) = <1 - H [1 COH U)]>

ij=1 Xj,Xj given b

gy

Theory €
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Calibration on p-Pb and Pb-Pb systems simultaneously

p-Pb 5.02 TeV Pb-Pb 5.02 TeV
10°
g 1 3
E H
10!
1000 20 40 0 20 40 60 80
15 contttr® Calculation of design points (Prior)
S 10 — - @ Observables:
2 = e Pb+Pb: multiplicity, v, v3, v4
Los _IE o
p+Pb: multiplicity, v», v3, mean-p1
®T7: 5 a5 e m @ @ W @ The fluctuating proton can generate huge
020 ol e eccentricity fluctuations.
o ¢ @ Prior range well-cover the data from both systems.
gOJO g
005 g
0.00 T T T — T
1 2 3 4 5 60 20 40 60 80

ngifiine/ (poffiine) Centrality %
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Calibration on p-Pb and Pb-Pb systems simultaneously

p-Pb 5.02 TeV Pb-Pb 5.02 TeV

10° \
‘\E 10? 3
2 \ &

10t

10°

] 20 ) 40 [¢] 20 40' 60 80

P contttr® After compare to data (Posterior, from emulator)
< 10 . @ The calibrated model emulator very well predicts
S — | —— ¢ the observable for both p-A and A-A.
205 3

0.0

1 2 3 4 5 60 20 40 60 80
nen/{Neh) Centrality %

0.20

0.15 3
- :
o010 —— S

| e f g

0.00 '

1 2 3 4 5 60 20 40 60 80
ngifiine/ (poffiine) Centrality %
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Parameters calibrated on pA, AA

NIERE ﬂ

YTV e

el e | e - -
Marginalized posterior distribution
‘Lgé i ‘ ‘ L oargy 5 niti
ZINNNPE @ What does it say about initial
NN condition with proton fluctuations.
G @ Are the extracted transport

=l el la a g . .

‘ I | coefficients different from using only
. AA data?

oL el i e

p-p-p # ey

D
@)
Theory €
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8
I
i
!
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The constrained T%ENTO with proton fluctuations
Calibrate on Pb+Pb at 2.76 TeV and 5.02 TeV

0.006:8878
TRENTo parameters
@ The analysis still prefers entropy
EKRT / Wounded ™ 5 —
KLN  IP-Glasma nglcjlre‘:oi dep05|t|on with P = 0.
—1‘.0 —6.5 0.0 015 1T0

p

Calibrate on p+Pb and Pb+Pb at 5.02 TeV

0.0207914¢
EKRT / Wounded
KLN IP-Glasrma nucleon y
-1.0 -0.5 0.0 0.5 1.0

p
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The constrained TRENTo with proton fluctuations

TRENTo parameters
@ The analysis still prefers entropy
deposition with p = 0.
@ No particular preference of # of
constituents. But a round proton (n =1
case) is disfavored.

1 3 5 7 9
Constituent number
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The constrained TRENTo with proton fluctuations

1.2
width > radius
TRENTo parameters

1.0 1 @ The analysis still prefers entropy
€ deposition with p = 0.
< 084 @ No particular preference of # of
3 constituents. But a round proton (n =1
|5 case) is disfavored.
.33 0.6 @ The joint distribution of constituent width
(%]
5 and its sampling radius within a proton is
© well constrained.

0.4

0.2 : : : .

0.4 0.6 0.8 1.0 1.2

Constituent sampling radius [fm]
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The constrained TRENTo with proton fluctuations

Constituent width [fm]

1.2 4

1.0 1

0.8 A

0.6 A

0.4 A

0.2

width > radius

04

Weiyao Ke (Duke Univeristy)

0.6

Constituent sampling radius [fm]

TRENTo parameters

@ The analysis still prefers entropy
deposition with p = 0.

@ No particular preference of # of
constituents. But a round proton (n =1
case) is disfavored.

@ The joint distribution of constituent width
and its sampling radius within a proton is
well constrained.

@ Need to check the resulting proton
eccentricities.
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Do we need a different 1/s, (/s to describe p-A?

Median and 90% credible region Median and 90% credible region
0.4 0.08
—— p-Pb, Pb-Pb 5.02 TeV —— p-Pb, Pb-Pb 5.02 TeV
03] == Pb-Pb276,5.02 TeV 0.06 == Pb-Pb2.76,5.02 TeV
2 021 2 004
0.1 0.02
1/4n
0.0 : ; : 0.00
150 200 250 300 150 200 250 300
Temperature [MeV] Temperature [MeV]
Comparing transport properties from two calibration.
e The n/s,(/s that describe pA and AA @ 5.02TeV is consistent with those describing a
lot more AA observables @ 2.76 and 5.02 TeV.
@ No extra handle on /s, (/s by including pA.
<=~ K
m;le
=} =2 = E = DA
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How can a 341D simulation help us understand the nature of pA

Looking at event-plane decorrelations
@ In Pb-Pb collisions, the event-planes decorrelate over pseudorapidity due to initial
participant plane twisting and fluctuations.
@ If medium in pA also undergoes pressure driven expansion, event-plane decorrelation
should be described in the same framework as AA.

@ In an initial state approach, the decorrelation has a different origin.

Weiyao Ke (Duke Univeristy) Global Bayesian Analysis June 14, 2018
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Extending TRENTo (round proton version) to finite rapidity

ds -

TRENTo x rapidity profile
@ (y,x ) has three degrees of freedom (first 3 y-moments):

mean p(x ), std o(xy), skewness y(x)

fy,x1) oc Flexp {iuk - %(ak)2 - é'y(ak)3 + }

@ u, o, v parametrized in nuclear thickness functions Ta(x1), Tg(x1).

mean (1) std (0)  absolute or relative-skew (7)
% log 74 o0 0(Ta — Tg) or YoTATTE .
©F
K
€
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Extending TRENTo (round proton version) to finite rapidity

Calibrated to p-Pb and Pb-Pb
@ This calibration did not include proton substructure.

@ Parameters constrained by charged particle pseudorapidity density of Pb-Pb and p-Pb and
event-by-event psuedorapidity fluctuation in Pb-Pb.

2000 0.35
#7 ALICE, 2.76 TeV 80 #0 ATLAS, 5.02 TeV #0 ATLAS, pr>0.5 GeV
1750 0.30 rel-skew + vis Hybrid
70 ---- abs-skew + vis Hybrid
1500 60 0.251 B0 rel-skew .
1250 [T1 abs-skew
s S 50 <, 0.20
= = T
= 1000 =S a0 \\ -
AS] AS]
750 30
500 on, et 201 g
Poott0000000000000000000000000ne 2
0= 0 T T T 0.00 v v v v
-50 -25 00 25 5.0 -2 0 2 20 40 60 80

n n Centrality (%)

S«
Theory €
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Rapidity evolution in the presence of proton shape-fluctuation.

How much of initial geometry info gets transformed into final state particles.
TRENTo — 341D Free streaming — 341D viscous hydrodyanmics — UrQMD. J
The:):glé
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Summary

Example application: Gravitational waves

Data

LIGO gravitational wave strain

Hanford, Washington (H1)

=
o

Soo
Ul o wm

-1.0

T

Strain (1072%)
=
o

oot
o

-0.5

\

Iy

o
T

— Numerical relativity
Reconstructed (wavelet)

myeee /M o

N
o

[ Reconstructed
T
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Posterior distribution
Black hole masses

—— Overall
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Summary

@ Global Bayesian model-to-data comparison is a powerful quantitative tool to learn QGP
properties from experimental data.

@ It has been successfully applied to large systems to infer initial condition model and QGP
transport coefficients.

@ Pb-Pb and p-Pb collisions can be simultaneously described at mid-rapidity by including
proton shape fluctuations.

@ Looking at event-plane decorrelations in future 3+1D analysis.

Weiyao Ke (Duke Univeristy) Global Bayesian Analysis June 14, 2018 32 /34



Outlooks

Bayes factor
@ A quantitative measurement of model performance.
@ Can be used to select a better-performing model.
@ Introduce natural penalty for over complex model (too many parameters).
°

How to calculate:

P(My) _ J P(BIExp, My)dp
P(My) [ P(p|Exp, Mo)dp

@ It has been applied to comparing hydro+UrQMD v.s. hydro + partial chemical

equilibrium EoS.
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Estimate fluid cell temperature distribution at 7 = 7j,y4r, using TRENTo

Number of fluid cells

initial condition.

PbPb2760
3 PbPb5020
40000 + ] XeXe5020
] 005020
30000 1 ] pPb5020
20000
10000 -
0 T T T T T T T
0.15 0.20 0.25 0.30 0.35 0.40 0.45

T [GeV]
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