Application of Global Bayesian Analysis to Large and small systems

Weiyao Ke

Duke Univeristy

June 14, 2018

Presentation is based on recent works by Jonah Bernhard, Scott Moreland, Steffen Bass and WK, arXiv:1804.06469, arXiv:1806.04802, PRC 96, 044912 (2017).

This work was supported by OpenScienceGrid, DOE funded National Energy Research Scientific Computing Center (NERSC), U.S. Department of Energy Grant no. DE-FG02-05ER41367.

Weiyao Ke (Duke Univeristy)

June 14, 2018 1 / 34

Questions

How to determine the properties of a physics system with observations of the final states?
 How accurate are our statements about its properties?

A schematic example: extract one parameter from one observation

A system with a state x_{true} leads to an observation y. $y = f_{phy}(x_{\text{true}})$.

- Measurement of y comes with uncertainty $\rightarrow \text{Exp}$ uncertainty $y_{exp} \pm \sigma_{exp}$.
- Our model f_M of the true function f_{phy} is imperfect \rightarrow Theory uncertainty σ_{th} .

A Bayesian point of view

• What is the probability of x to be the truth,

$$P(x = x_{true} | f_M, y_{exp}) \propto \text{Likelihood}(f_M(x) = y_{exp} | f_M, x) \times \text{Prior}(x)$$
$$\log \text{Likelihood} = -\frac{(f_M(x) - y_{exp})^2}{2\sigma^2} + C, \sigma^2 = \sigma_{exp}^2 + \sigma_{th}^2 \quad (+\cdots)$$

• Bayes' theorem P(A|B) = P(B|A)P(A)/P(B).

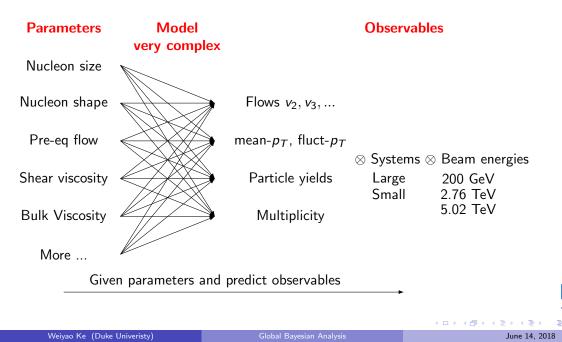
A much more complex situation for heavy ion physics

Parameters		Observable	es
Nucleon size			
Nucleon shape	Flows <i>v</i> ₂ , <i>v</i> ₃ ,		
Pre-eq flow	mean- p_T , fluct- p_T	⊗ Systems ⊗	Beam energies
Shear viscosity	Particle yields	Large Small	200 GeV 2.76 TeV
Bulk Viscosity	Multiplicity	5.02 TeV	

More ...

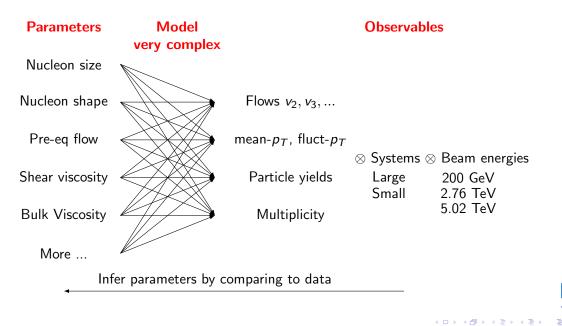
4.75.16

A much more complex situation for heavy ion physics

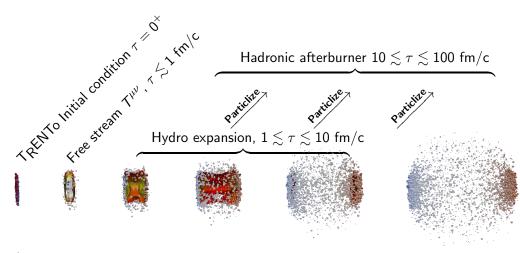


4 / 34

A much more complex situation for heavy ion physics

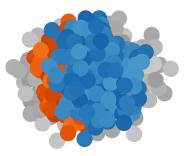


Work through a real example: extract η/s , ζ/s from AA collisions @LHC **Physics models: a multistage hybrid simulation.**

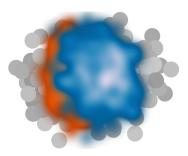


*Thesis work by JE Bernhard arXiv:1804.06469.

Prepare two nuclei nucleon positions sampled from a Woods-Saxon function \downarrow Determine binary collisions $P_{coll}(b) = 1 - \exp(-\sigma_{eff}T_{pp}(b))$ σ_{eff} fixed by fitting $\sigma_{DD, inel}$



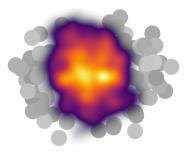
Prepare two nuclei nucleon positions sampled from a Woods-Saxon function **Determine binary collisons** $P_{\rm coll}(b) = 1 - \exp(-\sigma_{\rm eff} T_{pp}(b))$ $\sigma_{\rm eff}$ fixed by fitting $\sigma_{\rm pp, inel}$ Calculate participant density $T_{A,B}(x) = \sum \gamma_i \rho(x-x_i).$ $i \in N_{\text{part}}$



Prepare two nuclei nucleon positions sampled from a Woods-Saxon function **Determine binary collisons** $P_{\text{coll}}(b) = 1 - \exp(-\sigma_{\text{eff}}T_{pp}(b))$ $\sigma_{\rm eff}$ fixed by fitting $\sigma_{\rm pp, inel}$ Calculate participant density $T_{A,B}(x) = \sum \gamma_i \rho(x-x_i).$ $i \in N_{\text{part}}$

Entropy deposition Generalized mean ansatz:

$$rac{dS}{ au dx_{\perp}^2 d\eta_s} \propto \left(rac{T_A^p + T_B^p}{2}
ight)^{1/p}.$$



Prepare two nuclei nucleon positions sampled from a Woods-Saxon function \downarrow Determine binary collisons $P_{coll}(b) = 1 - \exp(-\sigma_{eff} T_{pp}(b))$ σ_{eff} fixed by fitting $\sigma_{pp, inel}$ \downarrow Calculate participant density

$$T_{A,B}(x) = \sum_{i \in N_{\text{part}}} \gamma_i \rho(x - x_i).$$

Entropy deposition Generalized mean ansatz:

$$rac{dS}{ au dx_{\perp}^2 d\eta_s} \propto \left(rac{T_A^p + T_B^p}{2}
ight)^{1/p}.$$

Features

- Interpolates a family of entropy deposition mappings at mid-rapidity.
- Gaussian proton shape.
- Parameters: nucleon width (w), fluctuation (σ), entropy deposition (p).

Physics model: pre-equilibrium free streaming and hydro

Pre-equilibrium stage

- Before $\tau_{\rm fs}$ free stream initial energy density and match it to hydrodynamic $T^{\mu\nu}$ at $\tau = \tau_{\rm fs}$.
- Shall use more realistic model in the future such as an effective kinetic theory.
- A tunable parameter τ_{fs} .

Hydrodynamics

- 2+1D relativistic viscous hydrodynamics (OSU hydro).
- EoS: interpolate between HRG and Lattice results (HotQCD).
- Parametrization of η/s and ζ/s

$$\frac{\eta}{s} = (\eta/s)_{\min} + (\eta/s)_{\text{slope}} (T - T_c) \left(\frac{T}{T_c}\right)^{(\eta/s)_{\text{curv}}}, \frac{\zeta}{s} = \frac{(\zeta/s)_{\max}}{\left(\frac{T - T_0}{(\zeta/s)_{\text{width}}}\right)^2 + 1}$$

Particularization and hadronic rescattering

Particularization: frzout by JE Bernhard

- Hadrons are sampled from fluid cell with Cooper-Frye prescription at $T = T_{sw}$.
- Include the effect of hadron finite widths.
- Non- δf type shear and bulk corrections.
- Parameter: particularization temperature ($T_{\rm sw}$).

Hadronic rescattering

• An Ultra-relativistic Quantum Molecular Dynamics model (UrQMD).

A summary of parameters

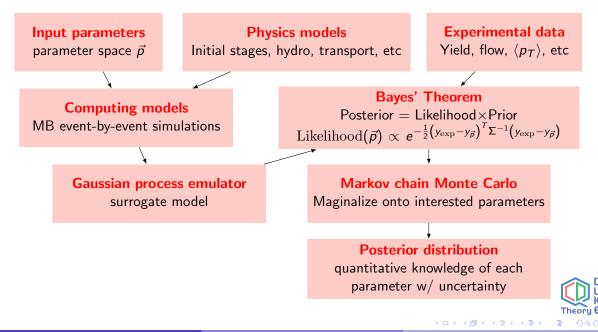
Group	Parameters	Explanation
IC	р	Entropy deposition parameter
	Norm(s)	Overall entropy normalizations
	σ fluct	Gamma fluctuation std of N-N collision
	<i>w</i> [fm]	Gaussian nucleon width
	d min [fm]	Nucleon-nucleon minimum distance in nucleus
Pre-eq	$ au_{ m fs}~[{ m fm/c}]$	Freestreaming time
QGP	η/s min	value of $\eta/s(T_c)$
	η/s slope [GeV $^{-1}$]	slope parameter of $\eta/s(T)$
	η/s curv	curvature $\eta/s(T)$
	ζ/s max	max value of $\zeta/s(T)$
	ζ/s width [GeV]	width parameter of $\zeta/s(T)$
	$\zeta/s T_0$ [GeV]	peak temperature of $\zeta/s(T)$
Particularization	T switch [GeV]	switching temperature from hydro to UrQMD.
		Theory

Weiyao Ke (Duke Univeristy)

æ

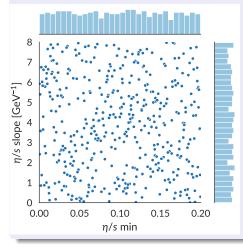
メロト メポト メヨト メヨト

A sophisticated Bayesian parameter estimation



Calibration to LHC 2.76 TeV and 5.02 TeV Pb+Pb data (new!)

Sample design input parameters

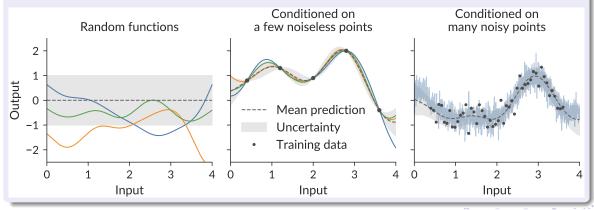


- For a high dimensional (n = 14) space, grid interpolate is impossible N ~ O(10ⁿ).
- A smarter sampling technique: Latin Hyper cube sampling.
- 1. Optimized random samples.
- 2. Maximize the mini. dist. between pairs of points.
- 3. The marginalization on any parameter is uniform.
- 4. $N \sim \mathcal{O}(10 \times n)$ for smooth function over the space.
- Perform full model calculation on design points.

Calibration to LHC 2.76 TeV and 5.02 TeV Pb+Pb data (new!)

Surrogate model: Gaussian process emulator

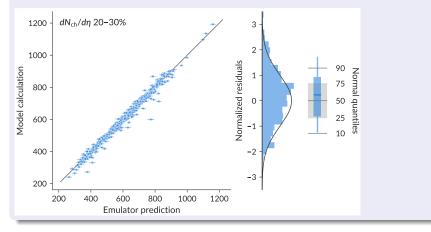
- After full model evaluation (\vec{Y}_i) on design points (\vec{x}_i) : $\vec{x}_i \longrightarrow \vec{Y}_i$.
- How to get arbitrary $\vec{Y}(\vec{x})$ for "arbitrary" parameters \vec{x} ?
- Non-parametric interpolation through Gaussian process emulator.
- $\bullet~$ A mean prediction + interpolation uncertainty.



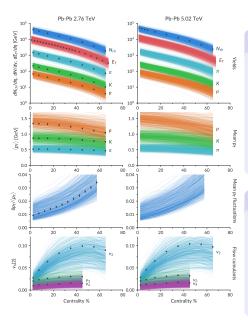
Calibration to LHC 2.76 TeV and 5.02 TeV Pb+Pb data (new!)

Validate the performance of Gaussian process emulator

- Predict observables with newly generated inputs and compare with actually calculation.
- Validate that the trained emulator predictions reproduce the dependence of \vec{Y} on \vec{x} .
- Emulator do have uncertainty!



Calibration to LHC 2.76 TeV and 5.02 TeV Pb-Pb data (New)



Calculation of design points (prior)

- 500 design points.
- Observables:

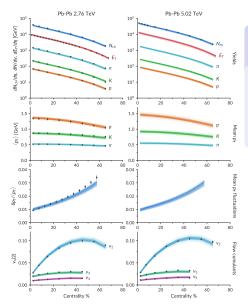
multiplicity, transverse energy, p, π, K yield and mean- p_T , mean- p_T EbE fluctuation, v_2, v_3, v_4 .

• Parameter design ranges are wide enough to spread over all data points.

The likelihood function

$$\begin{split} \Delta y &= (y_{\exp} - y_{\mathrm{p}}) \\ \log \mathrm{Likelihood} &= C - \frac{1}{2} \det \Sigma - \frac{1}{2} \left(\Sigma^{-1} \right)_{ij} \Delta y_i \Delta y_j. \\ \Sigma &= \sigma_{\mathrm{stat}}^2 + \sigma_{\mathrm{sys}}^2 + \sigma_{\mathrm{GP}}^2 + \sigma_{\mathrm{model}}^2 \end{split}$$

Calibration to LHC 2.76 TeV and 5.02 TeV Pb-Pb data (New)



After model-to-data comparison (posterior, from emulator)

- After comparing to experimental data, the emulator can predict observables from the calibrated distribution of parameters.
- Achieve a global agreement with data.

Weiyao Ke (Duke Univeristy)

June 14, 2018 14 / 34

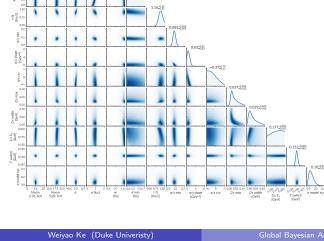
Parameters calibration

Marginalized posterior distribution

- Diagonal: single parameter distributions (integrate over N - 1).
- Off diagonal: pairwise correlations (integrate over N 2).
- Marginalization of the other N 1 parameters concentrates on the single parameter with uncertainties from other parts of the model folded in.

15 / 34

June 14, 2018



1.28295

13.9*14

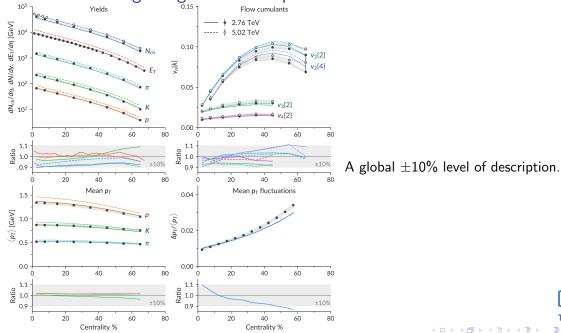
显聋 0.

18.5213

0.006

0.90182

Calculation using a high-likelihood parameter set



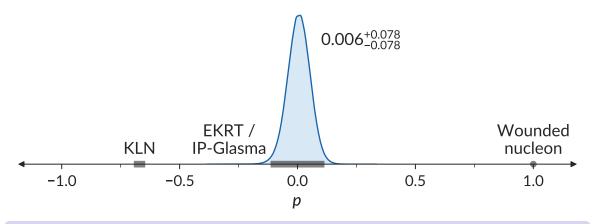
Weiyao Ke (Duke Univeristy)

June 14, 2018 16 / 34

ū

heory E

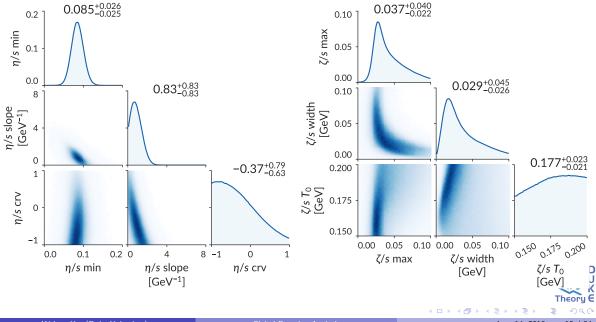
Focus on the initial condition



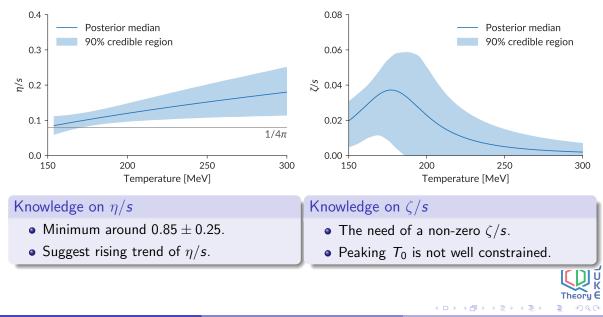
Knowledge on initial entropy deposition

• Support the eccentricity scaling ($\epsilon_{2,3}$ as functions of b) given by saturation physics based/motivated initial condition models.

Focus on transport properties



Focus on transport properties



Extend to small systems (from a final state point of view)

Collective features observed in small systems

- Long range pseudorapidity two-particle correlation.
- Finite v_2 , v_3 from multi-particle correlations.
- Competing of two pictures,
 - Initial state effect.
 - Final state effect
 - 1. Pressure driven and the formation of QGP in high-multiplicity events.
 - 2. Escape mechanism.

Study small system from a final state perspective

- Developments of T_RENTo towards a more realistic description of small system.
- Perform analysis on both pA and AA \rightarrow Can we describe both in a single framework?
- Can we study other observables that may help to distinguish IS and FS effects?

Developments in $\mathsf{T}_{\mathsf{R}}\mathsf{ENTo}$ for studying possible final state effects

The $\mathsf{T}_R\mathsf{ENTo}$ family

Original: round proton, boost-invariant

Weiyao Ke (Duke Univeristy)

▲ □ ► < □ ►</p>

Developments in $\mathsf{T}_{\mathsf{R}}\mathsf{ENTo}$ for studying possible final state effects

The T_RENTo family

 $\mbox{Original: round proton, boost-invariant} \quad \longrightarrow \quad \mbox{Add proton shape fluctuation}$

• A recent simultaneous calibration on both p-Pb and Pb-Pb collisions (2+1D).

Developments in $\mathsf{T}_{\mathsf{R}}\mathsf{ENTo}$ for studying possible final state effects

The TRENTo family

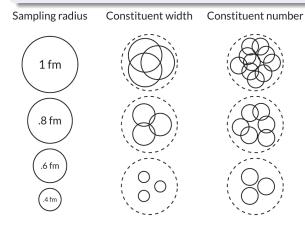
Original: round proton, boost-invariant \longrightarrow Add proton shape fluctuation $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ Add local rapidity dependence \longrightarrow Combine both features (in progress)

- A recent simultaneous calibration on both p-Pb and Pb-Pb collisions (2+1D).
- Opportunity of calibration using 3+1D simulations and predicts for possible final state effect in small systems.

Adding proton shape fluctuation to $\mathsf{T}_{\mathsf{R}}\mathsf{ENTo}$

Subnucleonic fluctuation

- In p-A collisions, initial geometry is sensitive to proton subnucleonic fluctuations.
- $\bullet\,$ Extend the default Gaussian round proton in ${\sf T}_{\sf R}{\sf ENTo}$ by adding subnucleon constituents.



Proton degrees of freedom

- A proton width parameter.
- Width of Gaussian constituents.
- Number of constituents.

Adding proton shape fluctuation to $\mathsf{T}_{\mathsf{R}}\mathsf{ENTo}$

Collision of Gaussian round proton

• Proton-proton collision probability at fixed b,

$$P_{
m coll}(b) = 1 - \exp(-\sigma_{
m eff}T_{
m pp}(b)), T_{
m pp}(b) = \int dx_{\perp}^2
ho(x+b/2)
ho(x-b/2)$$

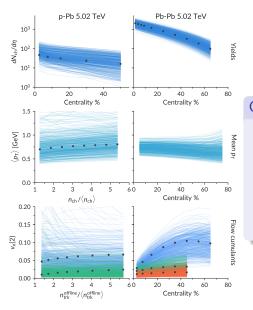
•
$$\sigma_{\rm eff}$$
 fixed by requiring $\sigma_{\rm pp, inel} = \int d\vec{b}^2 P_{\rm coll}(b)$.

Collision of fluctuating proton

 \bullet Proton-proton ${\it P}_{\rm coll}$ determined from constituent collisions,

$$egin{aligned} & P_{ ext{coll}}(b) = \left\langle 1 - \prod_{i,j=1}^{\#} [1 - P_{ ext{coll}}(b_{ij})]
ight
angle_{x_i,x_j ext{ given } b} \end{aligned}$$

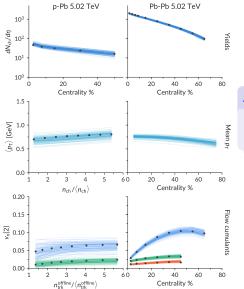
Calibration on p-Pb and Pb-Pb systems simultaneously



Calculation of design points (Prior)

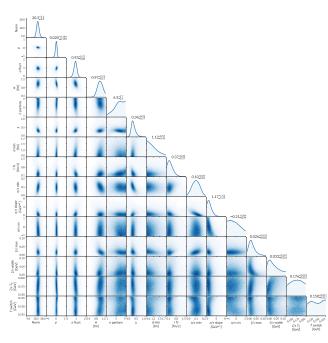
- Observables:
 - Pb+Pb: multiplicity, v_2 , v_3 , v_4 p+Pb: multiplicity, v_2 , v_3 , mean- p_T
- The fluctuating proton can generate huge eccentricity fluctuations.
- Prior range well-cover the data from both systems.

Calibration on p-Pb and Pb-Pb systems simultaneously



After compare to data (Posterior, from emulator)

• The calibrated model emulator very well predicts the observable for both p-A and A-A.



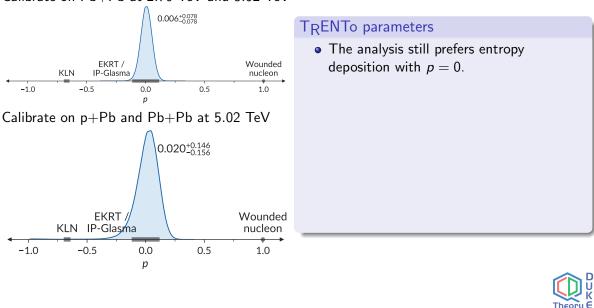
Parameters calibrated on pA, AA

Marginalized posterior distribution

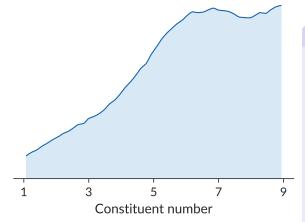
- What does it say about initial condition with proton fluctuations.
- Are the extracted transport coefficients different from using only AA data?

Weiyao Ke (Duke Univeristy)

The constrained TRENTo with proton fluctuations Calibrate on Pb+Pb at 2.76 TeV and 5.02 TeV



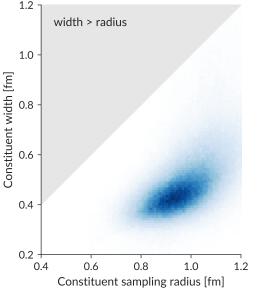
The constrained T_RENTo with proton fluctuations



T_RENTo parameters

- The analysis still prefers entropy deposition with p = 0.
- No particular preference of # of constituents. But a round proton (n = 1 case) is disfavored.

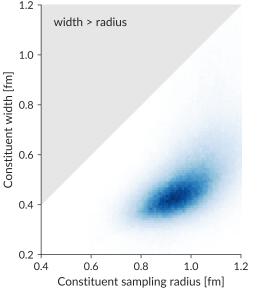
The constrained T_RENTo with proton fluctuations



T_RENTo parameters

- The analysis still prefers entropy deposition with *p* = 0.
- No particular preference of # of constituents. But a round proton (n = 1 case) is disfavored.
- The joint distribution of constituent width and its sampling radius within a proton is well constrained.

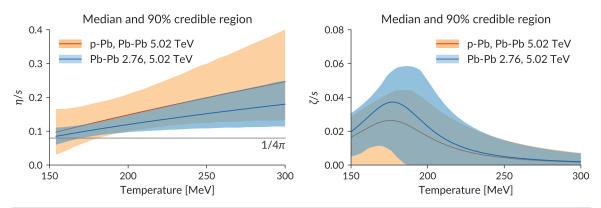
The constrained T_RENTo with proton fluctuations



T_RENTo parameters

- The analysis still prefers entropy deposition with p = 0.
- No particular preference of # of constituents. But a round proton (n = 1 case) is disfavored.
- The joint distribution of constituent width and its sampling radius within a proton is well constrained.
- Need to check the resulting proton eccentricities.

Do we need a different $\eta/s, \zeta/s$ to describe p-A?



Comparing transport properties from two calibration.

- The η/s, ζ/s that describe pA and AA @ 5.02TeV is consistent with those describing a lot more AA observables @ 2.76 and 5.02 TeV.
- No extra handle on $\eta/s, \zeta/s$ by including pA.

How can a 3+1D simulation help us understand the nature of pA

Looking at event-plane decorrelations

- In Pb-Pb collisions, the event-planes decorrelate over pseudorapidity due to initial participant plane twisting and fluctuations.
- If medium in pA also undergoes pressure driven expansion, event-plane decorrelation should be described in the same framework as AA.
- In an initial state approach, the decorrelation has a different origin.

Extending T_RENTo (round proton version) to finite rapidity

$$\frac{dS}{dx_{\perp}^{2}dy} \propto s_{0}(\vec{x}_{\perp}, y = 0) \times f(y, x_{\perp}).$$

$$T_{R}ENTo \times rapidity profile$$
• $f(y, x_{\perp})$ has three degrees of freedom (first 3 y-moments):
mean $\mu(x_{\perp})$, std $\sigma(x_{\perp})$, skewness $\gamma(x_{\perp})$

$$f(y, x_{\perp}) \propto \mathcal{F}^{-1} \exp\left\{i\mu k - \frac{1}{2}(\sigma k)^{2} - \frac{i}{6}\gamma(\sigma k)^{3} + ...\right\}$$
• μ, σ, γ parametrized in nuclear thickness functions $T_{A}(x_{\perp}), T_{B}(x_{\perp}).$

$$\overline{\frac{\text{mean } (\mu)}{\frac{\mu_{0}}{2} \log \frac{T_{A}}{T_{B}}} \sigma_{0} \frac{\gamma_{0}(T_{A} - T_{B}) \text{ or } \gamma_{0} \frac{T_{A} - T_{B}}{T_{A} + T_{B}}}$$

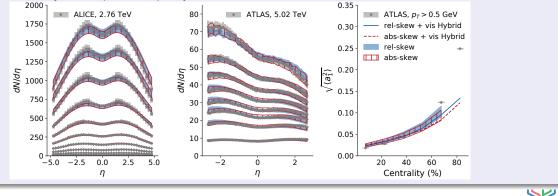
1

Image: A matrix

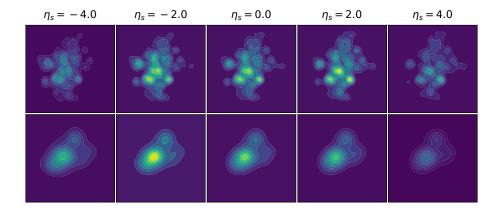
Extending T_RENTo (round proton version) to finite rapidity

Calibrated to p-Pb and Pb-Pb

- This calibration did not include proton substructure.
- Parameters constrained by charged particle pseudorapidity density of Pb-Pb and p-Pb and event-by-event psuedorapidity fluctuation in Pb-Pb.



Rapidity evolution in the presence of proton shape-fluctuation.



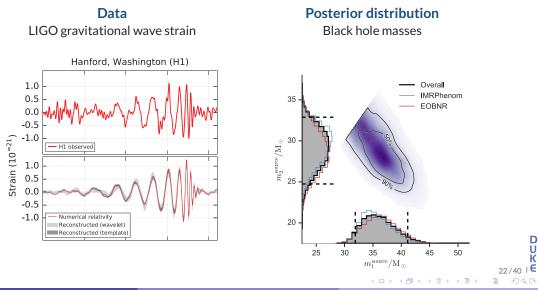
How much of initial geometry info gets transformed into final state particles. TRENTo \rightarrow 3+1D Free streaming \rightarrow 3+1D viscous hydrodyanmics \rightarrow UrQMD.

June 14, 2018 31 / 34

Image: Image:

Summary

Example application: Gravitational waves



- Global Bayesian model-to-data comparison is a powerful quantitative tool to learn QGP properties from experimental data.
- It has been successfully applied to large systems to infer initial condition model and QGP transport coefficients.
- Pb-Pb and p-Pb collisions can be simultaneously described at mid-rapidity by including proton shape fluctuations.
- Looking at event-plane decorrelations in future 3+1D analysis.

Outlooks

Bayes factor

- A quantitative measurement of model performance.
- Can be used to select a better-performing model.
- Introduce natural penalty for over complex model (too many parameters).
- How to calculate:

$$\frac{P(M_1)}{P(M_2)} = \frac{\int P(\vec{p}|\mathrm{Exp}, M_1) d\vec{p}}{\int P(\vec{p}|\mathrm{Exp}, M_2) d\vec{p}}$$

• It has been applied to comparing hydro+UrQMD v.s. hydro + partial chemical equilibrium EoS.

$^{16}O + ^{16}O$

Estimate fluid cell temperature distribution at $\tau = \tau_{hvdro}$ using T_RENTo initial condition.

