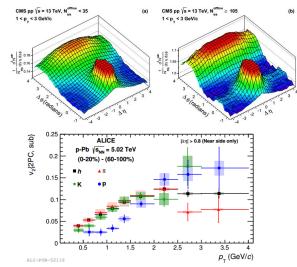


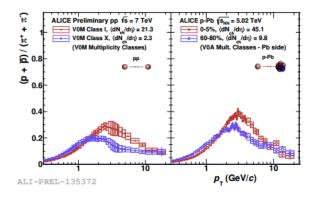
Strangeness enhancement in pp collisions from PACIAE model

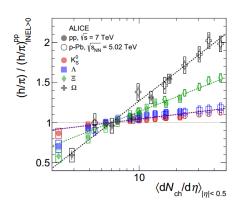
Liang Zheng

China University of Geosciences (Wuhan)

In collaboration with: Benhao Sa(CIAE) Yueliang Yan(CIAE) Zhongbao Yin (CCNU) Daimei Zhou (CCNU)

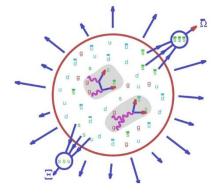

Second International Workshop on Collectivity in Small Collision Systems (CSCS2018) 2018/6/15

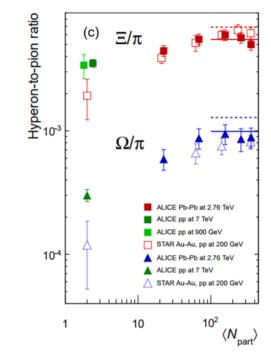

Outline


- QGP-like signals in small system
- Strangeness enhancement in pp
- PACIAE model and effective string tension
- Results and discussions

QGP-like signs in small system

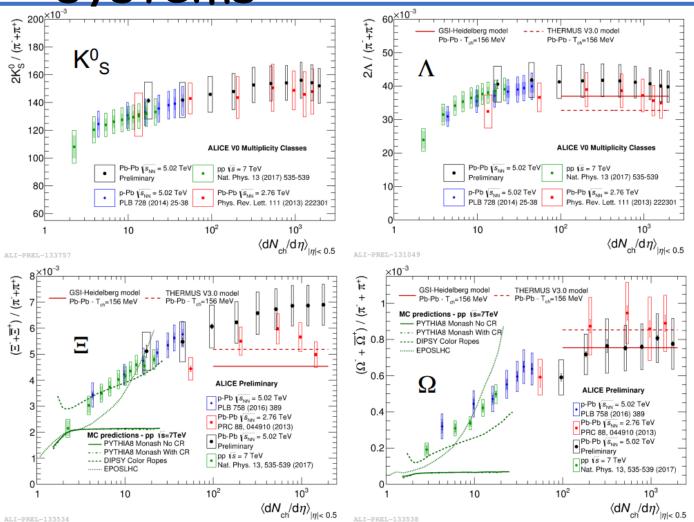
- Near side ridge structure in particle correlations
- Anisotropic asymmetry
- Baryon to meson ratio
- Strangeness enhancement




Strangeness enhancement

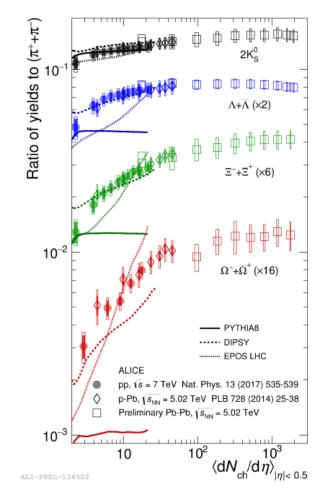
Strangeness enhancement as a sign for QGP

- Thermal gluon fusion
- Multi-strange baryon increasing with centrality
- Strangeness number dependent enhancement

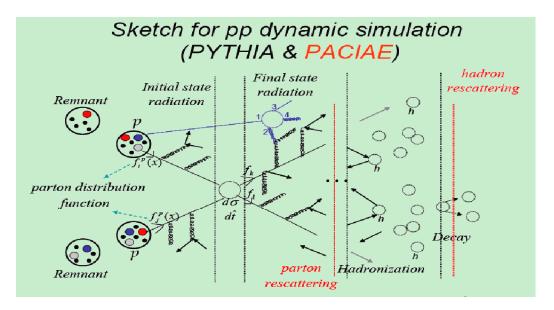

 $I = \begin{bmatrix} (b) \\ & \Omega^{-} + \overline{\Omega}^{+} \\ & \downarrow \\ &$

PLB 728 (2014) 216-227

Strange particle production across different collision


systems

- Strange to pion
 ratio smoothly
 evolves between
 different system
- No significant dependence on collision energy


Relative strangeness production in all collision system

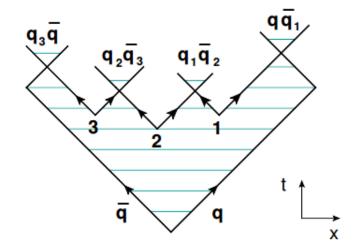
- Multiplicity dependent strangeness enhancement observed with a smooth evolution across pp/pA/AA collision systems
- Steeper slope with large strange number
- Saturated trend in most central AA collisions for all particles

PACIAE model

- Transport model with parton and hadron cascade effect
- Applicable for pp/pA/AA/eA etc.
- Based on PYTHIA6.4

Relevant channels in parton and hadron cascade

Parton rescattering channels $\frac{d\hat{\sigma}}{d\hat{\iota}}(ab \rightarrow cd; \hat{s}, \hat{t}) = \frac{\pi \alpha_s^2}{\hat{z}^2} |\overline{M}(ab \rightarrow cd)|^2,$ $|\overline{M}(q_iq_j \rightarrow q_iq_j)|^2 = \frac{4}{9} \frac{\hat{s}^2 + \hat{u}^2}{\hat{r}^2} \approx \frac{8}{9} \frac{\hat{s}^2}{\hat{r}^2},$ $|\overline{M}(q_i q_i \to q_i q_i)|^2 = \frac{4}{9} \left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}_2} + \frac{\hat{s}^2 + \hat{t}^2}{\hat{u}_1^2}\right) - \frac{8}{27} \frac{\hat{s}^2}{\hat{s}^4} \approx \frac{8}{9} \frac{\hat{s}^2}{\hat{t}_2},$ $|\overline{M}(q_i \bar{q}_j \to q_i \bar{q}_j)|^2 = \frac{4}{9} \frac{\hat{s}^2 + \hat{u}^2}{\hat{s}^2} \approx \frac{8}{9} \frac{\hat{s}^2}{\hat{s}^2},$ $|\overline{M}(q_i \bar{q}_i \rightarrow q_j \bar{q}_j)|^2 = \frac{4}{\alpha} \frac{\hat{t}^2 + \hat{u}^2}{\hat{z}^2} \approx 0,$ $|\overline{M}(q_i \bar{q}_i \to q_i \bar{q}_i)|^2 = \frac{4}{9} (\frac{\hat{s}^2 + \hat{u}^2}{\hat{\iota}^2} + \frac{\hat{t}^2 + \hat{u}^2}{\hat{\iota}^2}) - \frac{8}{27} \frac{\hat{u}^2}{\hat{\iota}^4} \approx \frac{8}{9} \frac{\hat{s}^2}{\hat{\iota}^2},$ $|\overline{M}(q_i \bar{q}_i \to gg)|^2 = \frac{32}{27} \frac{\hat{u}^2 + \hat{t}^2}{\hat{\omega}^2} - \frac{8}{3} \frac{\hat{u}^2 + \hat{t}^2}{\hat{\omega}^2} \approx -\frac{32}{27} \frac{\hat{s}}{\hat{t}},$ $|\overline{M}(gg \to q_i \bar{q}_i)|^2 = \frac{1}{6} \frac{\hat{u}^2 + \hat{t}^2}{\hat{v}\hat{t}} - \frac{3}{8} \frac{\hat{u}^2 + \hat{t}^2}{\hat{s}^2} \approx -\frac{1}{3} \frac{\hat{s}}{\hat{t}},$ $|\overline{M}(q_i g \to q_i g)|^2 = -\frac{4}{9} \frac{\hat{u}^2 + \hat{s}^2}{\hat{u}\hat{s}} + \frac{\hat{u}^2 + \hat{s}^2}{\hat{t}^2} \approx \frac{2\hat{s}^2}{\hat{t}^2},$ $|\overline{M}(gg \to gg)|^2 = \frac{9}{2}(3 - \frac{\hat{u}\hat{t}}{\hat{v}^2} - \frac{\hat{u}\hat{s}}{\hat{v}^2} - \frac{\hat{s}\hat{t}}{\hat{v}^2}) \approx \frac{9}{2}\frac{\hat{s}^2}{\hat{v}^2}.$


Hadron rescatt channels	tering
$\pi N \rightleftharpoons \pi \Delta$	$\pi N \rightleftharpoons \rho N,$
$NN \rightleftharpoons N\Delta$	$\pi\pi \rightleftharpoons k\bar{k},$
$\pi N \rightleftharpoons kY$	$\pi \bar{N} \rightleftharpoons \bar{k} \bar{Y},$
$\pi Y \rightleftharpoons k \Xi$	$\pi \bar{Y} \rightleftharpoons \bar{k} \bar{\Xi},$
$\bar{k}N \rightleftharpoons \pi Y$	$k\bar{N} \rightleftharpoons \pi\bar{Y},$
$\bar{k}Y \rightleftharpoons \pi \Xi$	$k\bar{Y} \rightleftharpoons \pi\bar{\Xi},$
$\bar{k}N \rightleftharpoons k\Xi$	$k\bar{N} \rightleftharpoons \bar{k}\bar{\Xi},$
$\pi\Xi \rightleftharpoons k\Omega^-$	$\pi \bar{\Xi} \rightleftharpoons \bar{k} \bar{\Omega}^-,$
$k\bar{\Xi} \rightleftharpoons \pi \bar{\Omega}^-$	$\bar{k}\Xi \rightleftharpoons \pi \Omega^{-},$
$N\bar{N}annihilation,N\bar{Y}$	annihilation,

Lund string model

- Creation of $\mathbf{q}_i \bar{\mathbf{q}}_i$ pair at string break-ups
- Flavor selection regulated by string tension trough tunneling probability

$$P(m_{\perp q}) \propto \exp(-\frac{\pi}{\kappa}m_{\perp q}^2)$$
$$= \exp(-\frac{\pi}{\kappa}m_q^2)\exp(-\frac{\pi}{\kappa}p_{\perp q}^2)$$

• Empirical parameters to suppress strange quark, diquarks

Effective string tension

• Gluon wrinkling in a string

Phys.Lett. B409 (1997) 393

$$\kappa_{eff}^{s} = \kappa_{0}(1-\xi)^{-\alpha}, \qquad \xi = \frac{\ln(\frac{k_{Tmax}^{2}}{s_{0}})}{\ln(\frac{s}{s_{0}}) + \sum_{j=2}^{n-1}\ln(\frac{k_{Tj}^{2}}{s_{0}})}.$$

Multiple string interactions

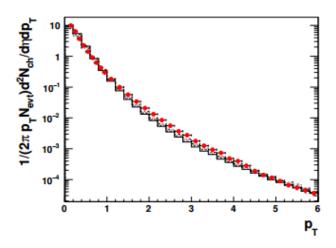
$$\kappa_{eff}^{m} = \kappa_0 (1 + \frac{n_{MPI} - 1}{1 + p_{T \ ref}^2 / p_0^2})^r$$

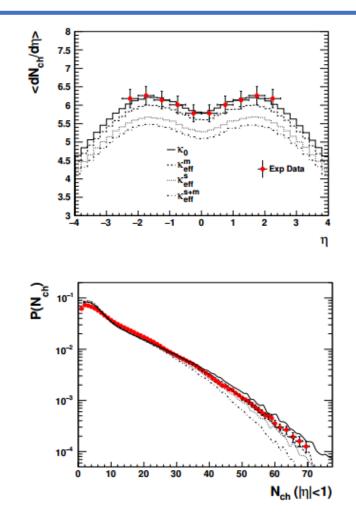
Varying flavor parameters with effective tension

$$\rho_{eff} = \rho_0^{\kappa_0/\kappa_{eff}}$$

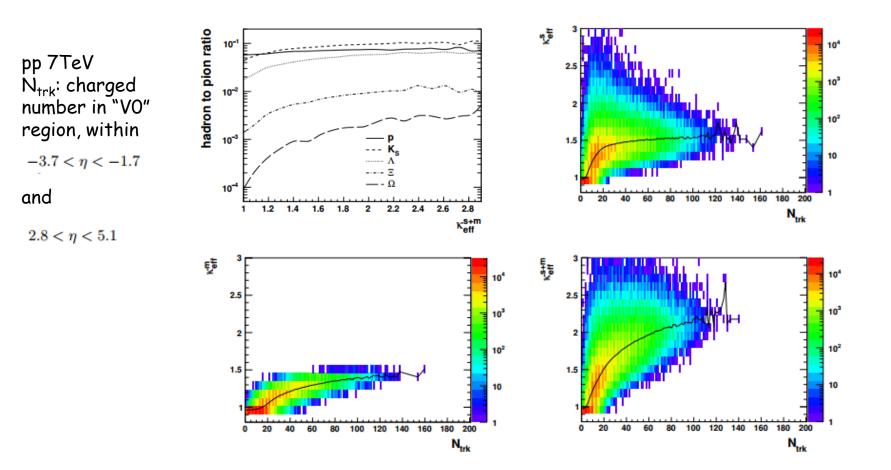
$$x_{eff} = x_0^{\kappa_0/\kappa_{eff}}$$

$$y_{eff} = y_0^{\kappa_0/\kappa_{eff}}$$


$$\sigma_{eff} = \sigma_0^{\kappa_{eff}/\kappa_0}$$

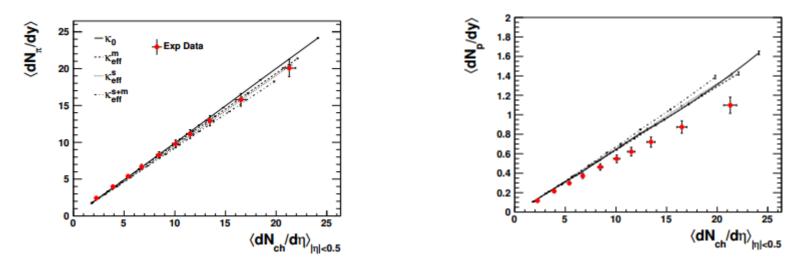

- ρ, strange to light quark ratio P(s)/P(u), PARJ(2) in PYTHIA;
- x, extra suppression on diquarks with strange content, PARJ(3) in PYTHIA;
- y, spin 1 to spin 0 diquark ratio, PARJ(4) in PYTHIA;
- σ , Gaussian width of the transverse momentum for primary hadrons in fragmentation, PARJ(21) in PYTHIA.

Charged particle productions


pp 7TeV NSD events

- Charged density drops with increasing string tension
- Transverse momentum spectra hardly changes
- Less high multiplicity events with large string tensions

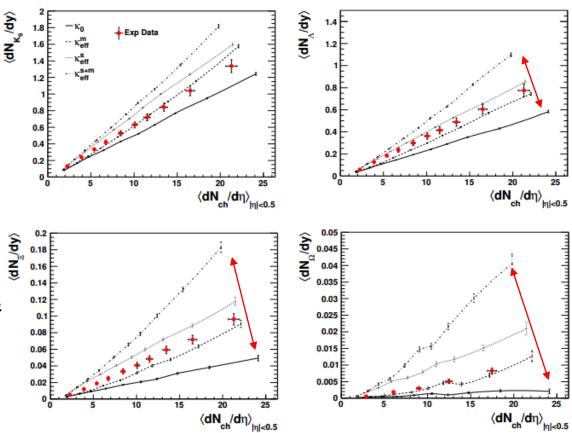
String tension variations



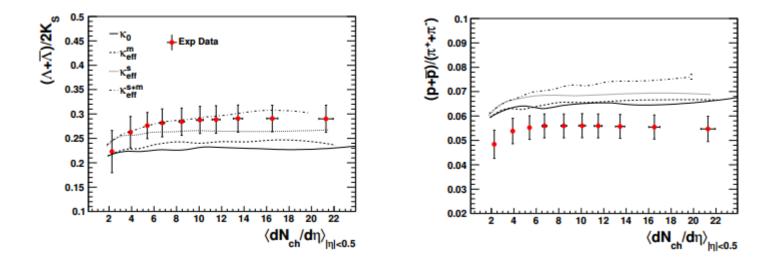
Integrated yield on multiplicity

pp 7 TeV

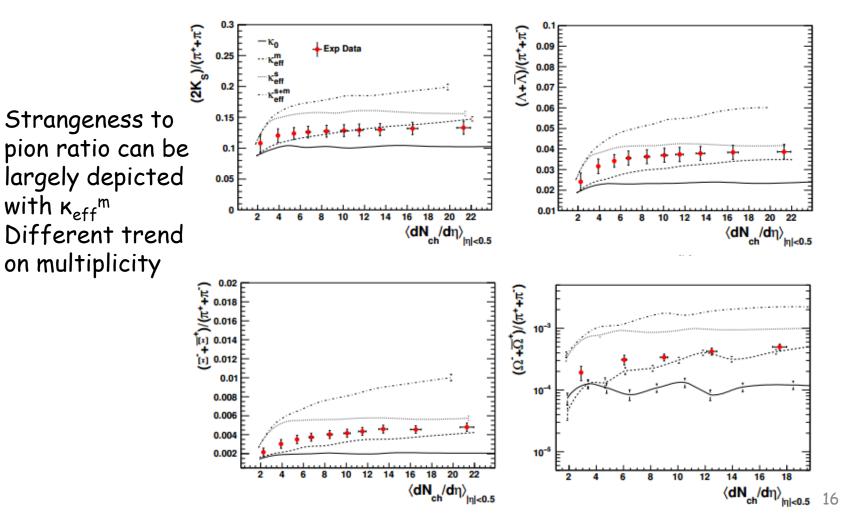
Event class defined with charged number in "VO" region


Event Class	I	II	III	IV	V	VI	VII	VIII	IX	Х
σ / σ_{INEL}	0-0.95%	0.95-4.7%	4.7 - 9.5%	9.5-14%	14-19%	19-28%	28-38%	38-48%	48-68%	68 - 100%
Exp Data	21.3 ± 0.6	16.5 ± 0.5	13.5 ± 0.4	11.5 ± 0.3	10.1 ± 0.3	8.45 ± 0.25	6.72 ± 0.21	5.40 ± 0.17	3.90 ± 0.14	2.26 ± 0.12
$dN_{ch}/d\eta(\kappa_0)$	24.1	18.5	14.8	12.4	10.5	8.4	6.4	4.8	3.4	1.9
$dN_{ch}/d\eta(\kappa_{eff}^m)$	22.1	17.2	14.0	11.8	10.1	8.1	6.1	4.7	3.4	1.9
$dN_{ch}/d\eta(\kappa_{eff}^s)$	21.5	16.5	13.1	11.0	9.5	7.7	5.8	4.3	3.1	1.8
$dN_{ch}/d\eta(\kappa_{eff}^{s+m})$	19.8	15.4	12.4	10.4	9.1	7.4	5.6	4.3	3.1	1.8

Pion and proton yields barely change with string tensions


Integrated yield on multiplicity

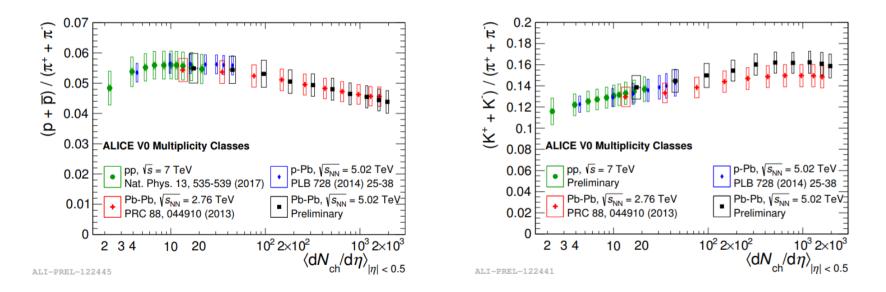
- Large string tension leads to strong dependence on multiplicity
- String tension moderated effects depend on strangeness number
- Multiple string interaction triggered fit with data magnitude



Baryon to meson ratio

- Baryon to meson ratio underestimated in strange and overestimated in nonstrange
- Unlikely to fit both ratios at the same time

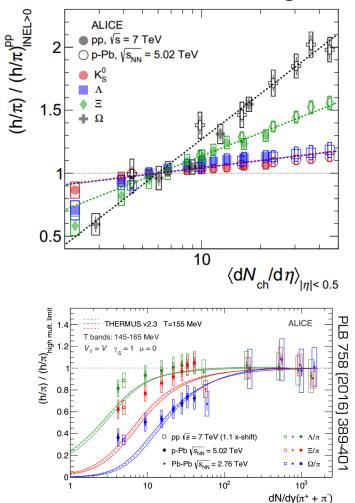
Relative strange production

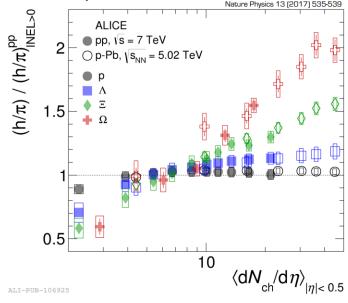


Summary

- Multiplicity dependent strangeness enhancement across a wide range of collisions system observed in data
- The origin of strangeness enhancement in pp is still largely unknown
- We test the strangeness enhancement in PACIAE model with an effective string tension approach
- It is possible to produce a strangeness enhancement in pp from a pure string fragmentation framework ©

Back up

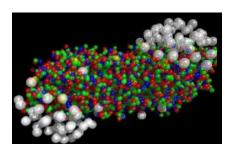

Chemical composition independent of energy/system

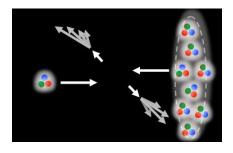


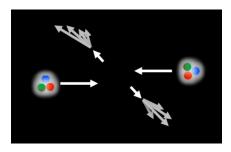
- No significant energy dependence
- Peripheral AA consistent with pp/pA at the same dN/deta
- p/pi slightly decrease in central AA
- K/pi slightly increase over dN/deta

Strangeness enhancement in PP A self-normalized double ratio maps out the

strangeness enhancement slope.





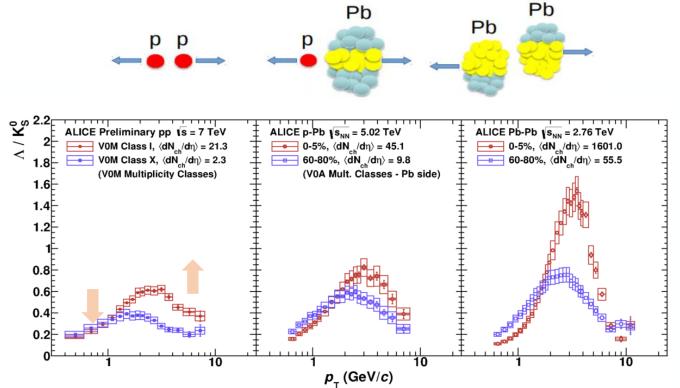

Integrated proton/pion almost no dependence on multiplicity

Grand canonical model can be extended to lower multiplicities implementing strangeness canonical suppression

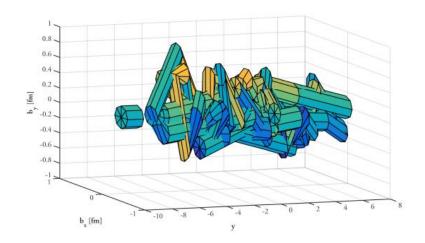
Research paradigm in Heavy Ion Collisions

The AA collision system Large system Deconfined/Hot QCD matter

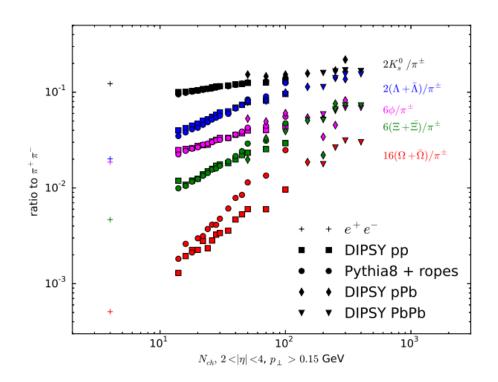
- Chemical equilibration
- Collectivity
- Energy loss


The pA collision system Small system Cold nuclear matter

• Initial states: nPDF


The pp collision system Small system Test of pQCD calculations, reference to understand all nuclear effects

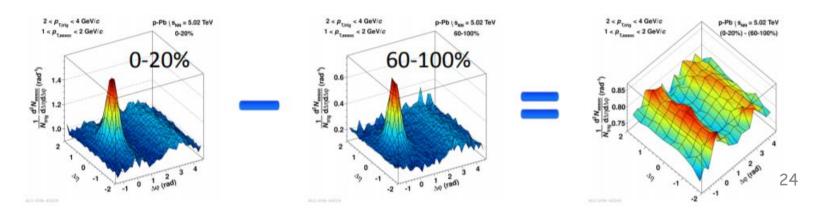
Signs of collectivity in small system


- Lambda to Kshort ratio
 - Similar feature for over all collision system

AA results well described by hadro models, B/M ratio manifestation of the radial flow.

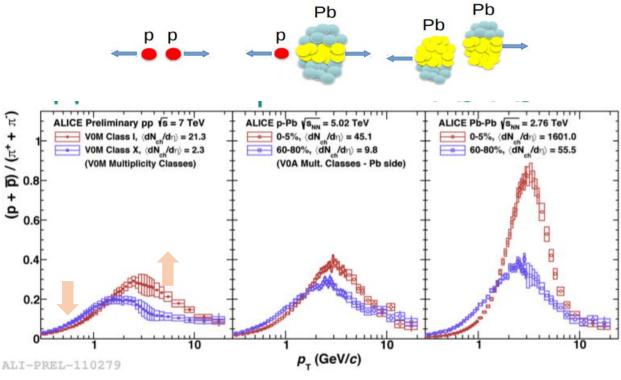
How do we treat strings that overlap in space-time?

Collectivity in small system


• Ridge structure in pp/pA

Particles with very different $\boldsymbol{\eta}$ are correlated

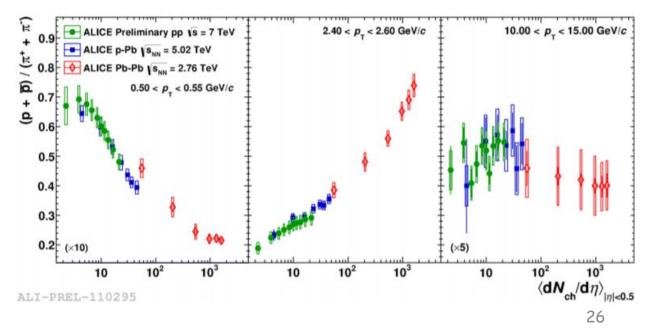
Near side ridge arises in


Double ridge appears in central pA after removing peripheral pA background

Signs of collectivity in small system

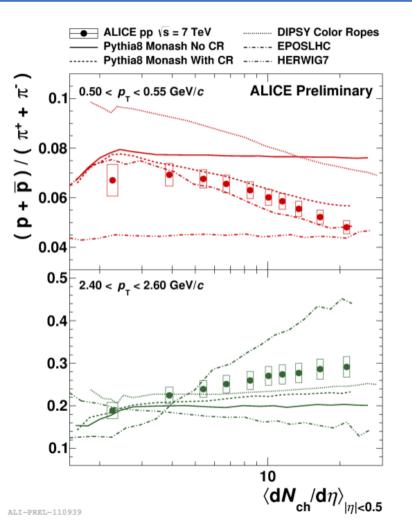
- Baryon to meson ratio
 - Similar feature for all collision system

AA results well described by hydrodynamic models, B/M ratio manifestation of the radial flow.

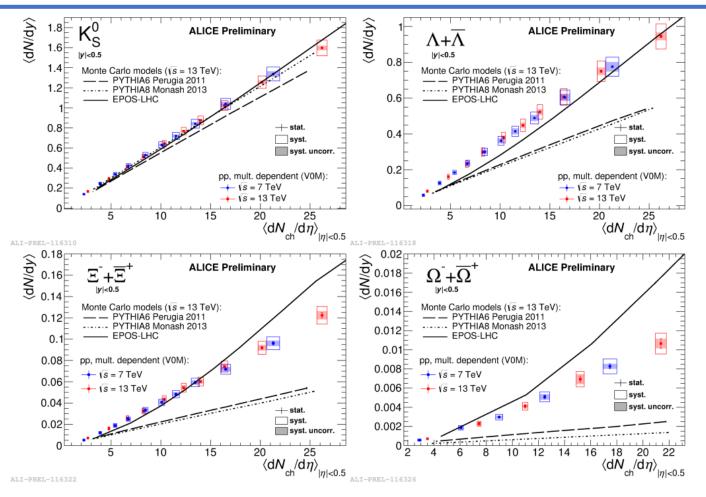


Similar thing for L/K ratio

Signs of collectivity in small system

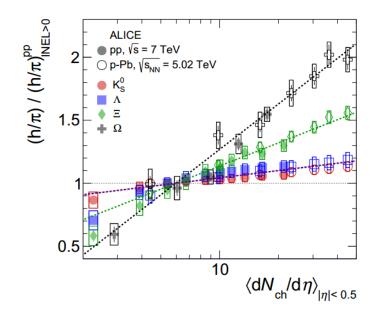

- Baryon to meson ratio
 - Similar feature for all collision system
 - Smooth evolution over multiplicity across all system at fixed p_{T}

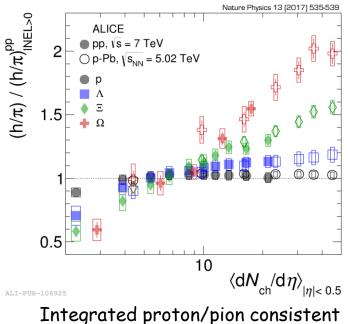
Does concepts like radial flow or recombination apply to pp collisions?



Signs of collectivity in small system: model comparison

- Do we have a "mini-QGP" created in pp?
- In pp, these thermoequilibrium behaviors can be mimicked by QCD effects, e.g. Color Reconnection


Strangeness production in pp



- Event activity drives particle production, energy independent
- EPOS reproduces the trend qualitatively

Strangeness enhancement in small system

A self-normalized double ratio maps out the strangeness enhancement slope.

Integrated proton/pion consistent with no dependence on multiplicity

Effective string tension

To quantify how different is a multi-gluon string compared to a pure qqbar string, we start with the mean multiplicity produced by a string. For a pure qqbar string:

 $\bar{n} \propto \ln(\frac{s}{s_0})$

For a multi-gluon string:

$$\bar{n} \propto \ln(\frac{s}{s_0}) + \sum_{j=2}^{n-1} \ln(\frac{k_{\perp j}^2}{s_0}),$$

Since the string structure is governed by the hardest gluon, we construct the quantity to represent the scale of a gluon string is deviated from the pure qqbar string:

$$\xi = \frac{\ln(\frac{k_{Tmax}^2}{s_0})}{\ln(\frac{s}{s_0}) + \sum_{j=2}^{n-1} \ln(\frac{k_{Tj}^2}{s_0})}.$$

One can further parameterize the effective string tension as:

$$\kappa^{eff} = \kappa_0 (1 - \xi)^{-a}$$