RecoMuon validation suite & PAT based H[#] Analysis framework

5th CMS Korea Collaboration Meeting Junghwan Goh (SKKU) 2009.09.26

Contents

- Current status of Muon validation suite
- 2. Development of PAT based analysis framework

Part 1 : Muon validation

Short report on the development of muon validation suite

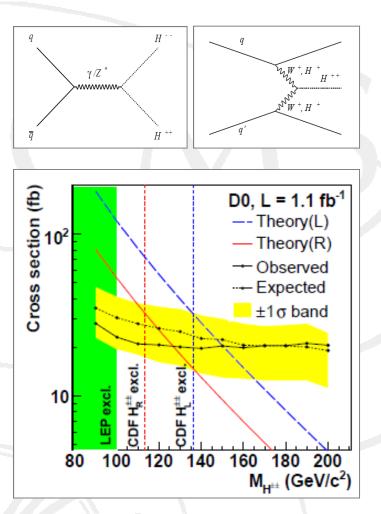


Status of Muon validation suite

- Validation suite is now in production stage
 - Most of packages are integrated to standard MC generation sequence – Release validation
 - Validation plots are managed with the DQM services, can be monitored via web interfaces
- And the muon validation working group is vital
 - Active discussions in the dedicated HN forum
 - Recent CMSSW version are regularly checked and validated
 - And reporting the validation status in the HN forums
 - Recent versions are validated : no differences between releases
- Still there could be more things to do
 - New plots to be added
 - Remove duplications, development in the DQM side...


DCMGenericClient

- PostProcessor have been used to produce efficiency/resolution histograms during the Harvesting step of Release validation
- Now PostProcessor got a new home and new name
 - After presentation at the DQM group, we decided to move this tool to more profit location : /DQMServices/ClientConfig with new name "DQMGenericClient"
 - Fully integrated to the DQM services
- The DQMGenericClient is the common tool for validation groups



Part II : H^{±±} Analysis

Current status of PAT (Physics Analysis Toolkit) based doubly charged Higgs analysis framework

Physics motivation

- Recent observation of neutrino mass could be solved by introducing Higgs triplet
- Drell-Yan process could give most clean signature
 - Independent of H[±] mass
 - H^{±±} decays only to di-leptons in the low mass ranges
- No observation until now
 - Direct search at CDF excluded M(H)<(136, 133, 115 GeV) in the µµ, ee, and eµ channels
 - Recent D0 search ; M(H_L)>150GeV, M(H_R)>127GeV in the 4 muon channel

Strategy

- First, follow Higgs to ZZ 4Leptons group analysis
 - Almost same final state, thus similar backgrounds, cuts
 - Similar cuts in basic object selection
- Next refine analysis dependent parts
 - Establish cuts quickly for 4 muon channel (JongSeok will show his results)
 - Extend to other channels, again based on Higgs to ZZ group analysis
- And develop concrete analysis framework
 - Consistency between analysis groups
 - Fast reaction on software changes easy to keep the SW be most up-to-date
 - Start with 4-muon channel and compare to Jongseok's results

Components of Analysis Framework

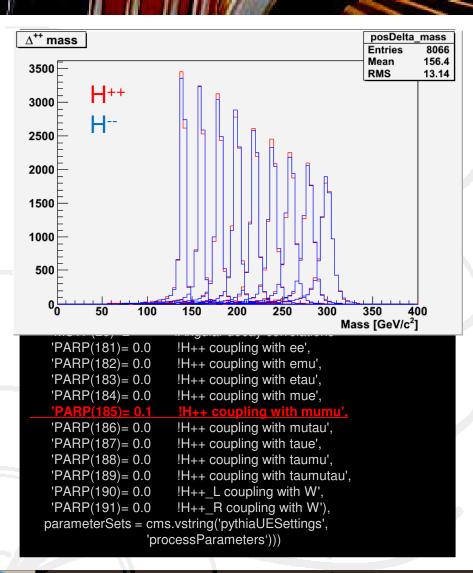
- All codes are manages at the CMS-CVS
 - Since we don't have official package for doubly charged Higgs analysis yet, all codes are updated at the UserCode area
 - Code is opened to public : CVS:/UserCode/JHGoh/HiggsAnalysis/DoublyChargedHiggs
 - Please have a look and give me comments
- Attempt to Fully modulized
 - Analysis framework will be consist of multiple modules
 - Store composite particle candidate (like ZtoMuMu) in the event data – reusable for other analysis
 - FWLite based user level optimization analysis
 - Fully PAT oriented : Will be the common basis of physics analysis



PAT oriented analysis framework

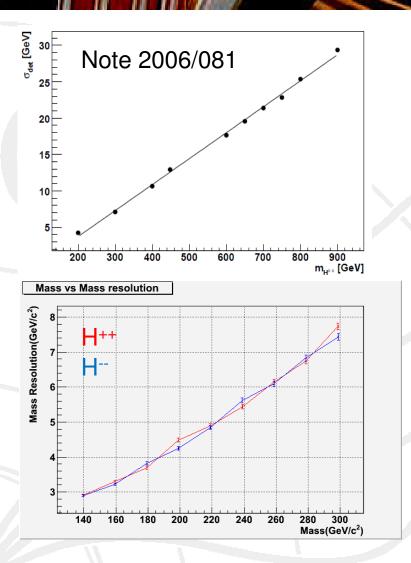
- There are lots of advantage to employ PAT in the analysis
 - Many physics groups are already moved/moving to PAT based framework
 - PAT gives consecutive interface, common algorithms
 - For myself, it was successful to migrate 2_2_X codes to 3_X releases within few minutes!!!

Analysis dataflow

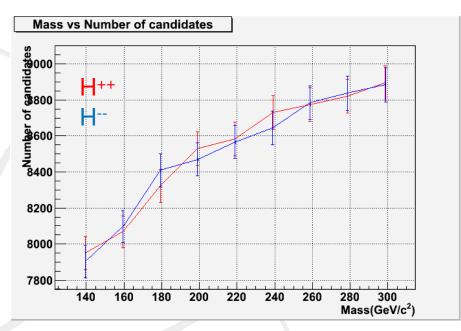

- Start from RECOSIM or PATLayer1Object
 - Most physics groups provide own set of PATLayer1
- Filtered 'good muons' are produced with PATMuonCandSelector
 - Separate muons by charge
- DileptonProducer combines SS muons, resulting H⁺⁺/H⁻⁻
- Basic selection variables are calculated and depicted by FourMuonAnalyzer

Testing the analysis framework

- To test new framework, we observe variables of the 4muon channel and compare to previous studies
 - Can be a good exercise to design the framework and give good hint to choose data formats
- Studied performance check on the PAT based analysis framework
 - Generate MC samples, run simple analyzer modules, observe histograms
- The framework should be ready for production release
 - Respond to the new releases quickly
 - There are many references major physics groups



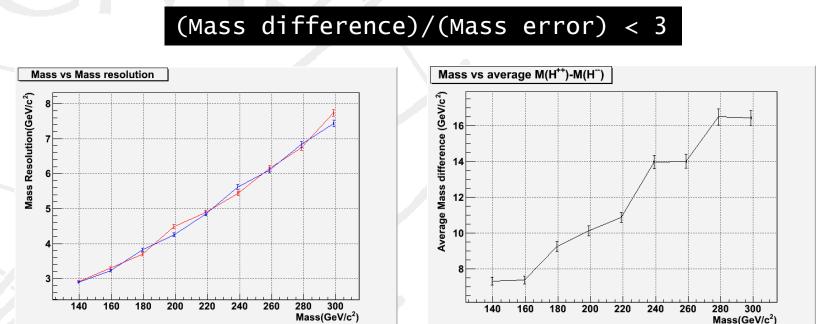
Signal sample generation


- Private samples are generated at the UoS cluster
 - CMSSW_2_2_13
 - Fast simulation
 - CM energy = 10TeV
- Mass bins from 140GeV to 300GeV, with 20GeV steps
- Yukawa coupling of Higgs to dimuons are set to be 0.1 and 0 for others for 4-mu samples
- All cff are available at CVS: UserCode/JHGoh/HiggsAnalysis/ DoublyChargedHiggs/python/PYTHIA*.py
 - Use V00-00-01 tags for CMSSW_2_X releases

Mass resolution

- The mass resolution increases (almost) linearly with respect to the Higgs mass
- The slope of curve looks similar to the previous studies in Note 2006/081
 - Previous one is slightly steeper than this new result, but more MC samples could be needed
- Here, the resolution is measured by binned X²-fitting on the mass distribution
 - The mass distribution is known to have long tails
 - Still, it is a good approximation

Number of Higgs candidate


- Number of Higgs candidates increase w.r.t the Higgs mass
 - Since the event number is fixed to 10k, this can be interpreted as an efficiency plot

Mass difference as a cut variable?

- If we require on-shell conditions, both of H⁺⁺ and H⁻⁻ should have same mass (up to decay width + detector resolution)
- Independent of MC truth Higgs mass

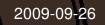
2009-09-26

- All parameters are estimated at the RECO level
- For example, we can set up a variable

Extension to LFNV channel

- Once the framework is set-up, we can extend the analysis codes to other channels
 - Development of PAT based composite candidate is finished, waiting for tests – ee, eµ channel samples are needed
 - Analysis code (Histogrammer) under development
 - Planning to focus on the Lepton number violating decay mode : H^{±±}→e[±]µ[±]
 - Still, this mode has same final state in Higgs to ZZ4Leptons channel
 - Thus we expect similar analysis strategy can be applied

Plans & On-going works


- Follow up Four muon channel analysis, with new framework
- Migration to new CMSSW release
 - We're moving to CMSSW_3_2_7 most recent production release
- New sample generation
 - New release, other decay modes, mass bins
- Many ideas to be implemented, some are not listed in this presentation
 - Track refit, vertex qualities
 - Developing cut optimization codes using FWLite+PAT
 - Refine muon isolation/identification cuts

Questions, Answers, Suggestions

Thank you

