

Search for RS G* \rightarrow ZZ $\rightarrow \mu^+\mu^- \mu^+\mu^$ at sqrt(s) = 10 TeV

Jin Chung, H.K. Park, G.N. Kim, D.C. Son Kyungpook National University Center for High Energy Physics

26. Sep. 2009. CMS-KR Meeting

RS G signal sample

- Winter09 Sample with CMSSW_2_2_6
- Fastsimulation with early 10 TeV condition
- $G^* \rightarrow ZZ \rightarrow \mu^+\mu^- \mu^+\mu^-$ 16 mass: 500 -2000 GeV/c² (100 GeV/c² difference) 5 c constant: 0.01, 0.02, 0.05, 0.07, 0.1
- Total 16 x 5 = 80 "analysis point"
- 10000 events / analysis point

- Both ZZ and tt samples were produced with Pythia6.416 embedded in CMSSW_2_2_3
- $p+p \rightarrow ZZ \rightarrow \mu^+\mu^- \mu^+\mu^-$

B.G. Channel	C.S. x B.R. (fb)	No. of Produced Event
ZZ	11.75	30000
tī	2799	30000

B.G.: Zbb

- Zbb was produced with Comphep-4.5.1 + Pythia6 hardronization (CMSSW_2_2_9)
- There were many complex issues including Comphep cut, kinematics, regularization, output pev file format, LHEinterface+CRABbing for process.
- $p+p \rightarrow Zbb \rightarrow \mu^+\mu^- bb$ (b, b \rightarrow natural decays)

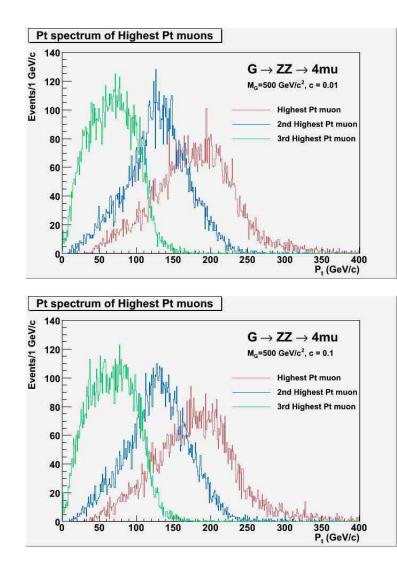
B.G. Channel	C.S. x B.R. (pb)	No. of Produced Event
Zbb	86.99	200000

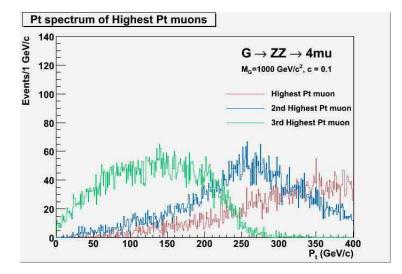
B.G.: QCD and W_jet (Summer08)

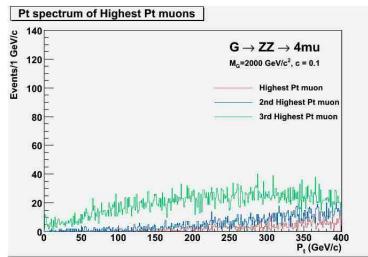
- QCD sample is produced with Pythia 6.416 (CMSSW_2_2_7)
 W_jet sample is produced by Madgraph
- Skimmed with condition: Nlepton>2, 1st, 2nd highest lepton Pt > 10 GeV, 3rd highest lepton Pt > 5 GeV
- QCD: CKIN(3) = 80 (minimum pt hat)

B.G. Channel	C.S. (pb)	No. of Produced Event	No. of final events (Skim Effi.)
QCD_pt80	1934639.567	3487680	6000 (0.00172)
W_jet	40000	9745661	16636 (0.00171)

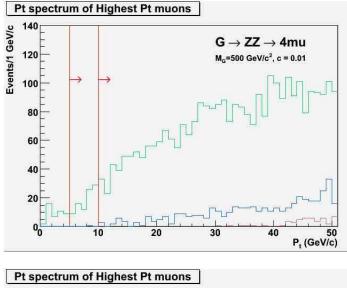
B.G.: Zmumu_jet (1)

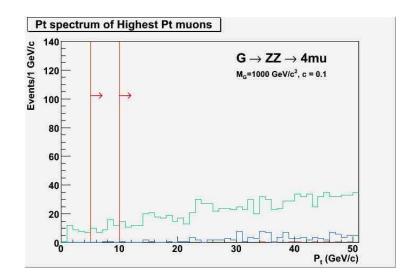


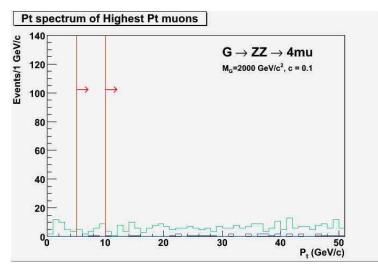

- Pythia6 (CMSSW_2_2_7)
- Produced with multiple section of different pt hat range. (details in the next page)
- $p+p \rightarrow Z+jet \rightarrow \mu^+\mu^- + jet$


B.G. Channel	C.S. x B.R. (pb)	No. of Produced Event	No. of final events
Zmumu_jet	7096200	1544625	239139 (No weighted)

Muon Pt: Highest Order (1)





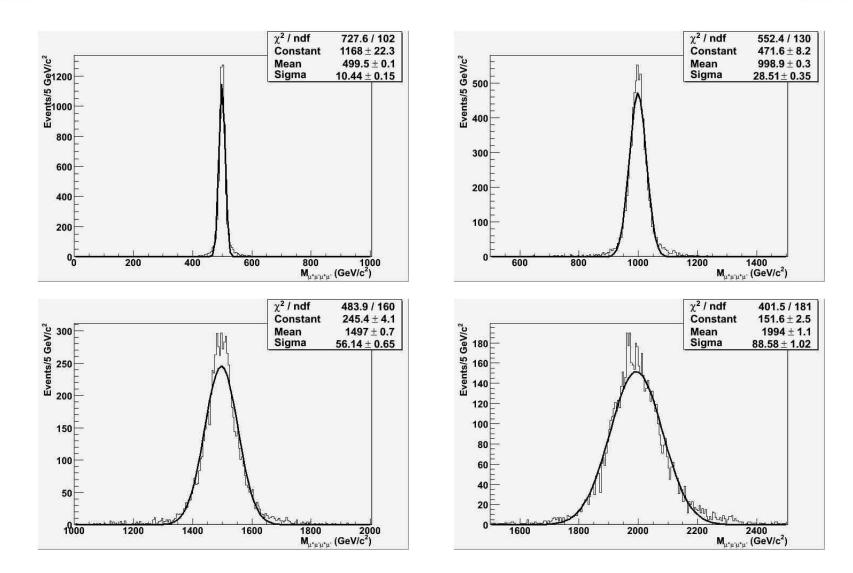

Muon Pt: Highest Order (2)

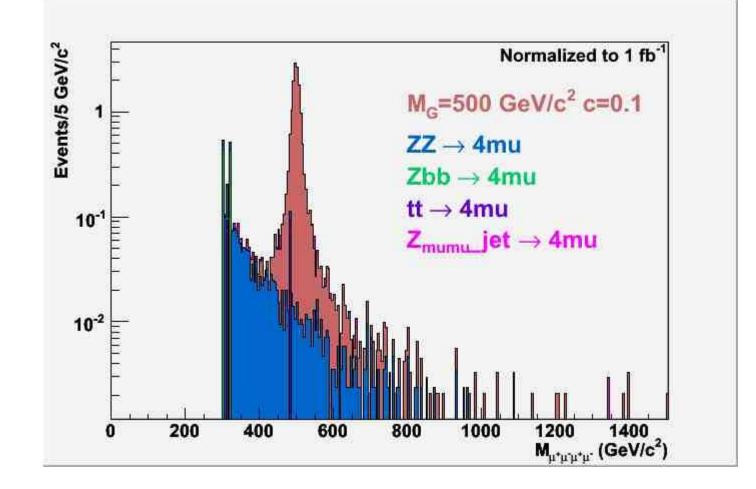
	HLT pass ratio(%)					
Sample	HLT_Mu3	HLT_Mu7	HLT_Mu15	HLT_ Double IsoMu3	HLT_ Double Mu3	HLT_ Double Mu7_Z
Graviton (c=0.1)	99.7	99.5	99.4	94.1	98.7	98.3
ZZ	95.3	91.5	87.2	80.3	84.6	69.5
Zbb	78.9	67.0	48.8	39.4	48.5	18.9
tt	98.3	96.1	93.7	58.7	82.2	48.4

HLT_DoubleMu7_Z was chosen for final HLT

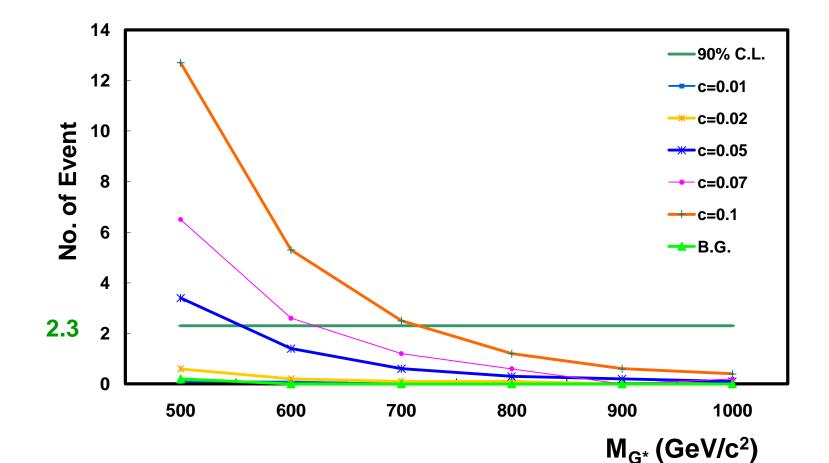
- 0. Passing HLT_DoubleMu7_Z trigger
- 1. $P_T > 7.0$ GeV/c for each muon candidate
- 2. Muon's |pseudorapidity(η)| < 2.4
- 3. No. of $\mu^+ \ge 2 \& \mu^- \ge 2$
- 4. $|M_z M_{\mu+\mu}| < 13.86 \text{ GeV/c}^2$ (3 σ from M_z fitting)
- 5. $M_{4\mu}$ > 300 GeV/c²

RSG: Selection	Cut Efficiency	(%
-----------------------	-----------------------	----

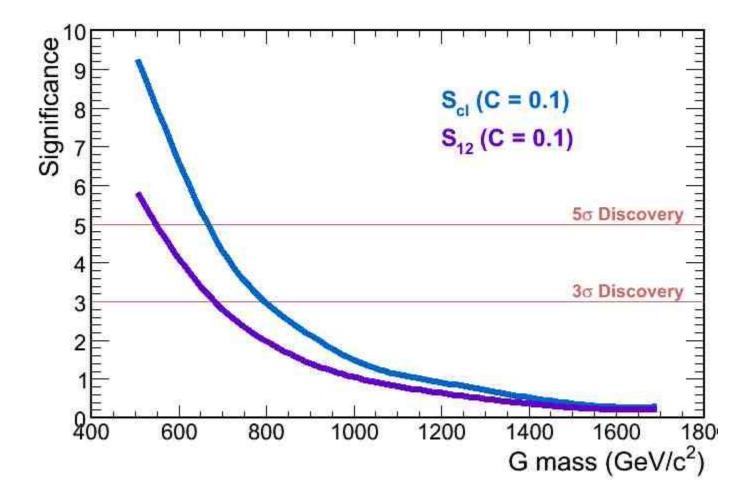

	Selection Cut Efficiency ($c = 0.1$)).1)
G* Mass (GeV/c²)	Recon + (skim) + HLT	Pt > 7 + Eta < 2.4 + Mz >= 2	Mz Cut + MG > 300 GeV/c ²	3σ Fit
500	98.3	76.4	68.3	63.4
700	98.8	80.0	71.2	66.9
1000	98.7	83.3	73.6	68.9
1200	98.7	85.1	73.9	69.9
1500	98.3	86.3	72.8	69.6
2000	97.4	87.7	71.5	68.6

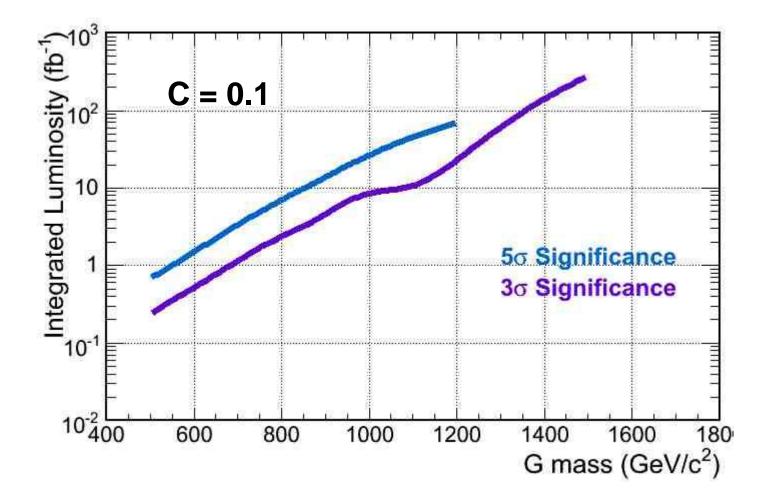

	Selection Cut Efficiency (%) (vs. MG=500 GeV/c ² c = 0.1)			
B.G.	Recon + (skim) + HLT	Pt > 7 + Eta < 2.4 + Mz >= 2	Mz Cut + MG > 300 GeV/c ²	3σ Fit
ZZ	69.5	37.4	5.5	0.5
Zbb	18.9	0.1	0.001	0
Tt	48.4	0.9	0.007	0.003
QCD	0.0009	0	0	0
W_jet	0.0016	1.02e-5	0	0
Zmumu_jet	0.7	0.0009	2.0e-6	5.0e-8

Reconstructed RS Graviton (c=0.1)



RS Graviton vs. Background in 1 fb⁻¹




 There are already many studies on sources of systematic uncertainty. Especially Higgs and EWK studies were very helpful to understand them.

Source	Uncertainty (%)
PDF + QCD	6
Integrated Luminosity	10
Muon Reconstruction	4
Misalignment	2
MC Statistics	0.85
Statistical	100
Total	100.78

Required Int. luminosity for discovery (c=0.1)

Summary

- Prospective RS G^{*} →ZZ →µ⁺µ⁻ µ⁺µ⁻ in the mass range of 500 GeV/c² to 2 TeV/c² was analyzed.
- Including major BG: ZZ, Zbb, tt, additional QCD, Z+jet, W+jet background

 \rightarrow could be highly reduced in the overall mass range

- Under the Systematic uncertainty effect, We could probe $5\sigma(3 \sigma)$ discovery in the mass range $M_{G^*} < 650(700) \text{ GeV/c}^2$ with 1 fb⁻¹ int. lumi. with c = 0.1
- About 300 pb⁻¹(700 pb⁻¹) int. luminosity is expected to be required for 3σ(5σ) discovery of RS G with 500 GeV/c² mass with c = 0.1

Note AN-09-141 in Review Now

