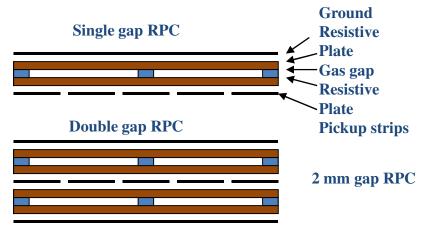
Basic R & D for HPLs Consisting of Melamine + Phenol: ρ <10¹¹

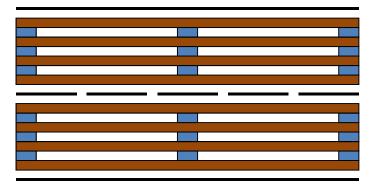
M. S. Jeong (Korea Univ.)

- **1. Introduction**
- 2. Why R & D of Multi-gap RPC?
- **3.** Basic R & D for HPLs
- 4. Results
- **5.** Conclusions

1. Introductions


RPCs : Gaseous detectors for trigger of highenergy particles

Designed by R. Santonico in 1981 {NIMA187(1981)377}.


- Consists of thin layers of uniform gas gaps which form electrodes.
- Materials for the RPC electrodes : high resistive plates to reduce spark noises
 - \Rightarrow Bakelite, melamine, or glass plate
- **RPCs for LHC : 2 mm thick double gap RPCs**
- **Timing RPCs for high time resolution**
- \Rightarrow Multi-gap RPCs : gap thickness : 0.2 ~ 0.5 mm

Operation mode :

- Spark mode (original)
- BELLE (glass), Argo YBJ (HPL)
- Avalanche mode for high rate capability LHC (HPL), PHENIX (HPL), All timing RPCs (glass)

Milti-gap RPC

2. Why R&D of multi-gap RPCs for CMS ?

- Higher rate capability > 5 kHz/cm²
- Aiming for future muon triggers at RE1/1 for CMS
- SLHC requires faster trigger with higher background

Higher rate with smaller avalanche charge

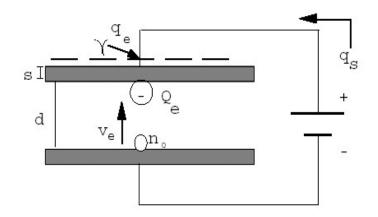
- Rate capability ~ 1 /<q_e> (actually depends on <Q_e>)
- Rate capability ~ 1/ ρ (ρ : resistivity of electrode material)

Typical Timing RPCs consisting of multi-gap glass RPCs

- <Q_e> more than 10 times smaller compared to CMS RPCs
- $\rho \sim$ a few 100 times larger compared to CMS RPCs 10¹⁰ ~ 10¹¹ for CMS/ATLAS RPCs, ~ 10¹³ for timing RPCs
- Rate capability < 1 kHz/cm² for timing RPCs

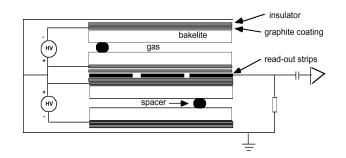
Then, what if multi-gap RPCs with HPLs ?

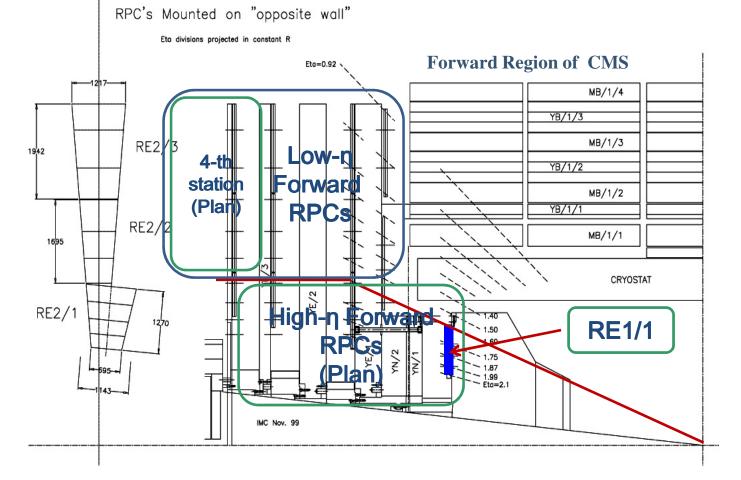
- $\langle Q_e \rangle \sim 10$ times smaller compared to the current CMS RPCs
- New HPL : Melamine-Phenol-Melamine $\rightarrow \rho < 10^{11}$
- Oiling required to reduce noises (nobody tried)
- Expected rate capability > 5 kHz/cm²


Advantage : we can keep the current RPC technology for the CMS trigger.

Disadvantage : more difficult in the detector construction compared to the current double-gap RPCs

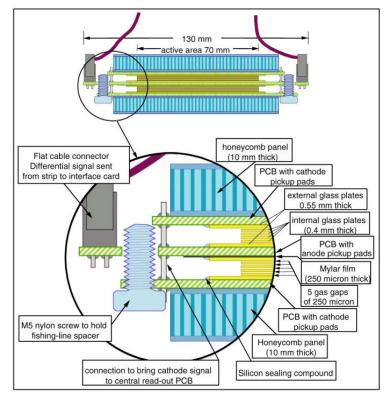
$$q_{e} = \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{q_{el}}{\eta d} n_{0ij} M_{ij} k[e^{\eta(d-x_{ij})} - 1]$$


$$< q_e >= m \sum_{j=1} \frac{q_{el}}{\eta d} \mu k e^{\eta d} \left(\frac{\lambda}{\lambda + \eta}\right)^j$$


$$< Q_e > = rac{\eta d}{k} < q_e > \quad k = rac{\epsilon_r d/s}{\epsilon_r d/s + 2}$$

Forward Region CMS RPCs System

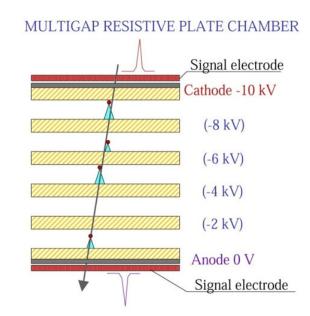
Function : L1 muon triggers 2 wings (RE+, RE-) 4 stations (RE1, RE2, RE3, RE4) Pseudo rapidity covering $0.9 < \eta < 2.1$ (1.6) η segmentations : 10 (6)

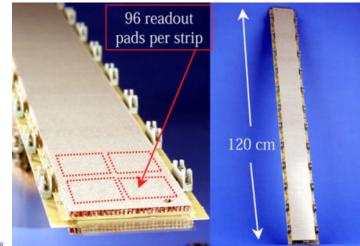


Benchmark

Multi-gap timing RPCs for ALICE (glass, C. Williams)

Cross section of double-stack MRPC - ALICE TOF


Double stack - each stack has 5 gaps (i.e. 10 gaps in total)


250 micron gaps with spacers made from fishing line

Resistive plates 'off-theshelf' soda lime glass

400 micron internal glass 550 micron external glass

Resistive coating 5 MΩ/square

ALICE timing RPCs

Mean avalanche charge induced in the gas volume

N. Akindinov, et al., NIMA 533 74 (2004)

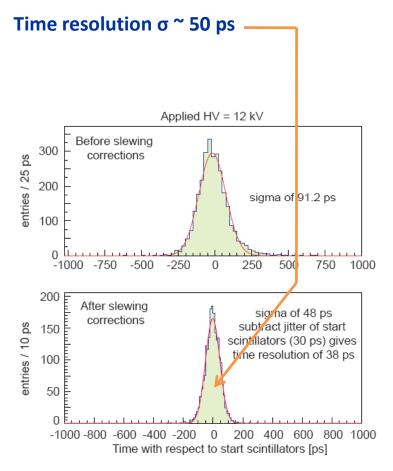
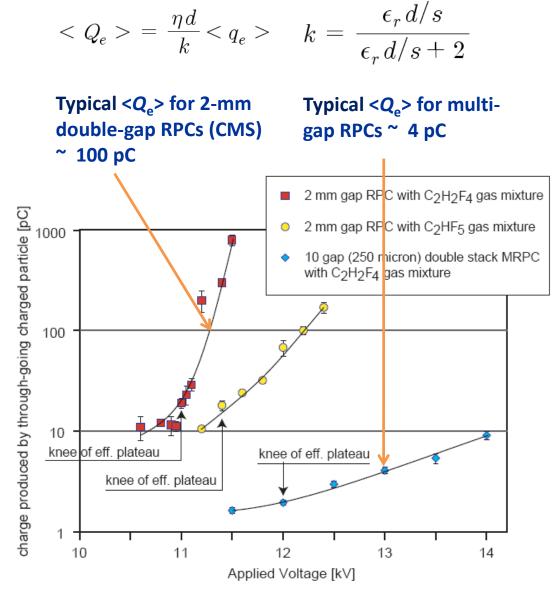
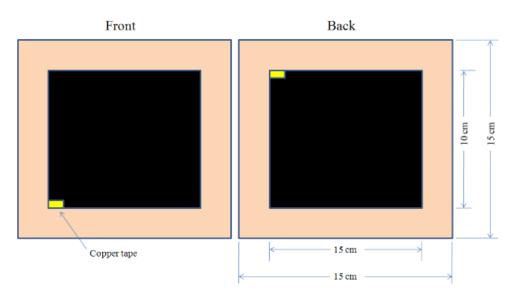
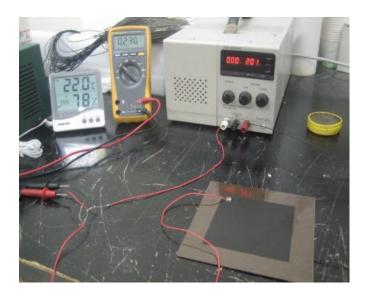



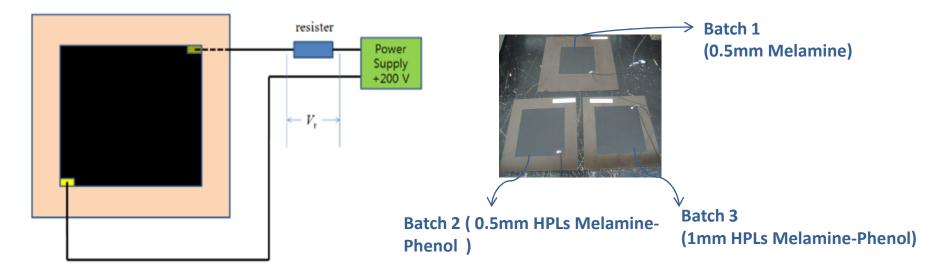
Fig. 3. Time distribution of MRPC before and after slewing corrections.

Choice of R&D for future CMS RPCs ?

- Higher rate capability > 5 kHz/cm²
- Aiming for future muon triggers at RE1/1 for CMS
- SLHC requires faster trigger with higher background
- \rightarrow Proposing 6-gap RPCs with melamine-phenol HPLs $\rightarrow \rho < 10^{11}$
- First oiled multi-gap RPCs (for curing noises)


Multi-gap RPCs working in the current environment of the CMS forward RPC?


- Same gas system → same gas mixture
- Same electronics → same FEE
- → The detector characteristics should lie between the standard double-gap and the timing RPCs.


	CMS Double gap RPC	6-gap <u>RPC</u>	
Gap width	2 mm	0.65 mm	
Total gas volume	4 mm	3.9 mm	
$< q_e >$	2 ~ 5 <u>pC</u>	~ 0.7 <u>pC</u>	
$< Q_e >$	60 ~ 150 pC	~ 10 pC	
Threshold	~ 200 fC	~ 70 <u>fC</u>	
Type of HPLs	phenol	melamine+phenol	
Thickness of resistive plate	2 mm	1.0 mm	
Number of resistive plate	4	8	
Resistivity of HPL	$1 \sim 5 \times 10^{10}$ Ohm-cm	n $< 10^{11}$ Ohm-cm	
Rate capability	$2 \sim 3 \text{ kHz/cm}^2$ ~ 10 kHz/cm^2		

3. Basic R&D of HPLs

Resistivity tests for HPLs consisting of Melamine + Phenol sheets

Using simple math, we can calculate the resistivity.

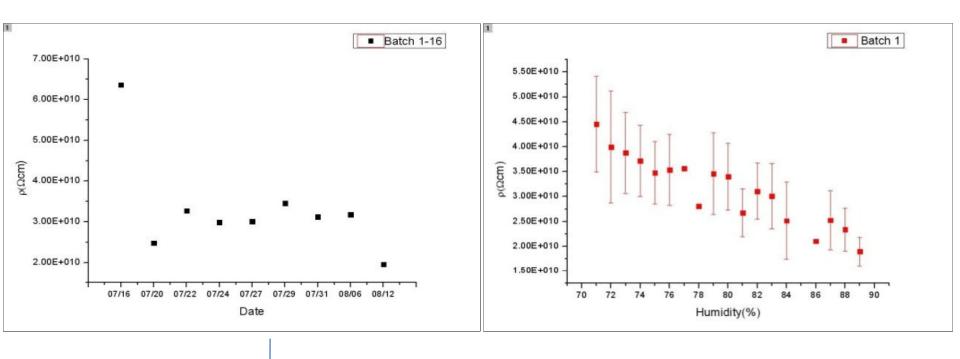
$$\rho_b = R_r \frac{A}{d} \left(\frac{V_0 - V_r}{V_r} \right)$$

- Power supply voltage= V₀
- Voltage difference from $R_r = V_r$
- Area of electrode= A
- Thickness of HPL = d
- Resistance=R_r

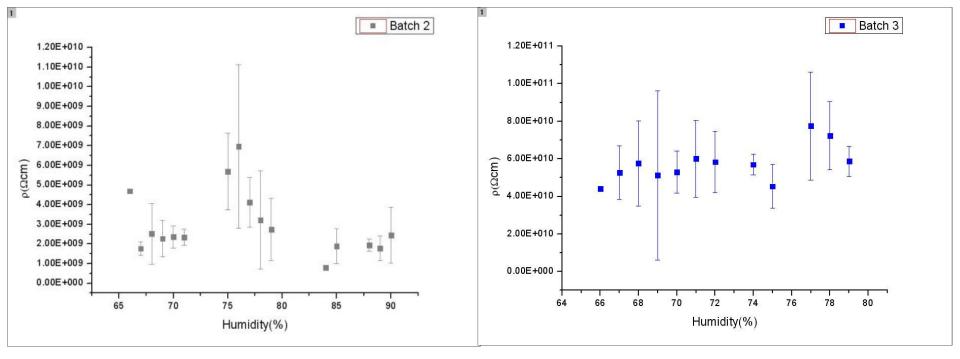
Normalization to the expected values at T=20°

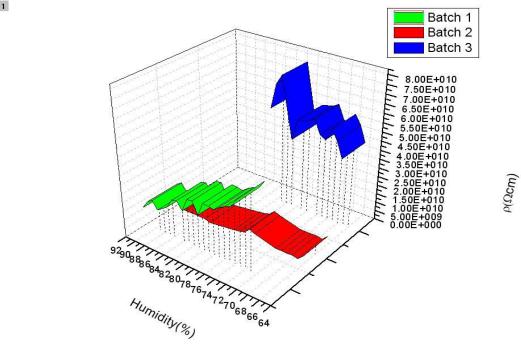
$$\rho_b^{20} = \rho_T e^{\alpha(T-T_0)}$$

Coefficient for temperature-dependence (0.12/°C)


- Resistivity ~ strongly depends both on temperature and humidity

4. Results


Initial Condition				
$V_0(V)$	200			
$A(cm^2)$	100			
$R_r(k\Omega)$	47.46			


	Batch 1	Batch 2	Batch 3	
	(M-P 0.5mm)	(HPLs M-P 0.5mm)	(HPL M-P 1mm)	
Average Voltage	0.007	0.01	0.205	
Difference $V_r(V)$	0.697	8.21		
Thickness d(cm)	0.05	0.05	0.1	
Average $\rho_{20}(\Omega_{CM})$	$3.91 imes 10^{10}$	$5.13 imes 10^{9}$	$6.94 imes 10^{10}$	
$\operatorname{LMax.}(\Omega cm)$	1.28×10^{11}	$2.21 imes10^{10}$	$1.95 imes 10^{11}$	
$\operatorname{LMin.}(\Omega cm)$	$1.59\! imes\!10^{10}$	8.00×10^{8}	$5.94\! imes\!10^{10}$	
LStandard			$3.47 \! \times \! 10^{10}$	
Deviation	1.77×10^{10}	$4.39 imes10^9$		

Date	July 19th	July 20th	July 22nd	July 24th	July 27th	July 29th
ρ ₂₀	$6.4 imes 10^{10}$	$2.5 imes 10^{10}$	$3.3 imes 10^{10}$	$3.0 imes 10^{10}$	$3.0 imes 10^{10}$	$3.5 imes10^{10}$
Humidity(%)	76	84	75	75	79	74
Date	July 31st	August 6th	August 12th	a		
ρ_{20}	$3.1 imes 10^{10}$	$3.2 imes 10^{10}$	$1.9 imes 10^{10}$	Standard 1.25×10^{10}		< 10 ¹⁰
Humidity(%)	75	74	88	Deviation		

Data for batch 1-16

5. Conclusions

- Resistivity ~ strongly depends both on temperature and humidity

- HPL samples : successful to build low-resistive multi-gap RPCs Resistivity : Batch 1 : ρ = 3.91 x 10¹⁰ Ω cm (σ = 1.77 x 10¹⁰ Ω cm) Batch 2 : ρ = 5.13 x 10⁹ Ω cm (σ = 4.39 x 10⁹ Ω cm) Batch 3 : ρ = 6.94 x 10¹⁰ Ω cm (σ = 3.47 x 10¹⁰ Ω cm)

 \Rightarrow Able to select HPLs with resistivity in a range $10^{10} < \rho < 10^{11}$ at T=20° and H=50%

- We recently manufactured

1 oiled and 1 non-oiled 6-gap RPCs with Batch 3 HPLs (1 mm)

to address the feasibility for the future CMS muon triggers.