Mechanical Issues SPL cavities/cryomodules Workshop CERN 30 Sep. 2009

Preparatory slides

W. Weingarten

SPL cavities general parameters

Type of accelerating structure	β = 1/0.65	standing wave
Accelerating mode		TM_{010} , π -mode
Fundamental frequency	$f_{RF}[MHz]$	704.4
Nominal gradient	E_{acc} [MV/m]	25
Quality factor	Q_0	$1 \cdot 10^{10}$
Active length	<i>L</i> [m]	1.065
Cell-to-cell coupling	k _{cc} [%]	?
Iris diameter [mm]		~ 129
$R/Q[\Omega]$		~ 570
E_{peak}/E_{acc}		~ 2.2
B_{peak}/E_{acc}	[mT/MV/m]	~ 4.4
Tuning range	[kHz]	?
$\Delta f/\Delta L$	[kHz/mm]	~ 250 ¹⁾
Lorentz-force detuning constant	K_{Lor} [Hz/(MV/m) ²]	?
Q _{ext} of input coupler		1.10^{6}
Cavity bandwidth	$f/Q_{\rm ext}$ [Hz] FWHM	704
Fill time	[µs]	460
HOM couplers	absorbing layer in between cavities	

Parameters of the five-cell β = 1 cavity (note: $R = V^2/P$, where P is the dissipated power and V the peak voltage in the equivalent LCR circuit).

¹⁾ Adopted from H. Saugnac et al., Preliminary design of a stainless steel helium tank and its associated cold tuning system for 700 MHz SCRF cavities for proton

SPL cavities general parameters - Nb ¹⁾

Flectrical	and	mechanical	properties of Niobium
LICCUICAI	ullu	meenamean	properties or incontain

Residual Resistivity Ratio > 300

Thermal conductivity @ 4.2 K 10 - 100 W/(mK)

Grain size $\approx 50 \, \mu \text{m}$

Yield strength > 50 N/mm²

Tensile strength > 140 N/mm²

Elongation at fracture > 30%

Vickers hardness HV 10 ≤ 60

Linear expansion $(L_{273}-L_{4.2})/L_{4.2}$ 1.3 %

Melting point 2468 - 2497 °C

Recrystallisation temperature 830 - 1230 °C

Stress relieving temperature 780 °C (1 h)

Content of the main impurities µg/g

Residual Resistivity Ratio > 300

Ta ≤ 500

H ≤ 2

W ≤ 50

0 ≤ 10

Mo ≤ 50

N ≤ 10

Ti ≤ 50

C ≤ 10

Fe ≤ 50

Ni ≤ 50

¹⁾ adopted from XFEL Design Report

DIMENSIONS DE LA CAVITE SPL $\beta = 1$ DESIGN CEA-SACLAY

POSITION ET DIMENSIONS DU COUPLEUR DE PUISSANCE

Experience from DESY - Important production steps ¹⁾

- Deep drawing (die from anodized Al alloy)
- EB welding at iris and equator
- Annealing for re-crystallization under avoiding to grow large grains @ 750-800°C in a vacuum oven at a pressure of 10⁻⁵-10⁻⁶ mbar for 1-2 h
- Full penetration EB welding (preferably from the inside) in good vacuum (p < 5·10⁻⁵ mbar)
- Removal of roughness and defects by grinding
- Intermediate frequency checks and possibly trimming mandatory
- Flanges from NbTi alloy (about 50%Ti)

Figure 2) Measurable parts and subassemblies of the 1.3GHz cavity

¹⁾ adopted from XFEL Design Report

Important preparation steps for cavities 1)

- electrochemical removal of a thick Niobium layer (so-called damage layer) of about
 150 μm from the inner cavity surface
- a rinse with particle free/ultra-pure water at high pressure (~100 bar) to remove residues from the electrochemical treatment
- outside etching of the cavities of about 20 μm
- ultra-high vacuum annealing at 800°C (out-gas possibly dissolved hydrogen / relieve mechanical stress)
- tuning of the cavity frequency and field profile
- removal of a thin and final layer of about 30 μm by EP prior to the low power acceptance test done in a vertical dewar
- rinsing with particle free/ultra-pure water at high pressure (100 bar) to remove surface contaminants and drying in class 10 clean room
- assembly of auxiliaries (pick-up probe and HOM pick-up)
- baking at 120°C in an ultra-high vacuum
- additional six times rinse with high pressure ultra-pure water (100 bar)
- low power acceptance test at 2 K temperature

¹⁾ adopted from XFEL Design Report

Important preparation steps for string assembly¹⁾

- disassembling cavities in clean room from vertical test insert
- measurement of field profile and frequency in clean room
- tank welding in normal workshop area
- provisional input antenna replaced by the power coupler
- cavities are rinsed six times with ultra-pure high pressure water
- insertion of a bellows between the beam pipes of the individual components in a class 10 clean-room
- integral leak check

¹⁾ adopted from XFEL Design Report

Figure 4.2.4 "Excitation curves" of the best cavities treated with 800°C furnace treatment and EP. The XFEL baseline gradient of 23.4 MV/m is exceeded by a significant margin.

¹⁾ adopted from XFEL Design Report

Figure 4.2.5 Comparison of the accelerating gradients at $Q_0 = 10^{10}$ in the first performance test after the full preparation sequences using etching with post-purification at 1,400°C (blue) and EP with 800°C annealing (red).

Figure 4.2.7 Performance of the TTF accelerator modules. The plot shows the average maximum gradient in the accelerator modules against the average gradient achieved in the acceptance tests at Q=10¹⁰ (open symbols). In addition, the operational gradient of the modules is plotted against the acceptance test gradient (closed symbols) which is based on equal RF power feeding.

Cavity weld to He vessel issues

- keep E_a , f, field flatness
- welding done after vertical test @ 2 K
- Is welding possible before 120 °C baking and before vertical test?
- Yes, but under stepwise check of f and field flatness by field profile measurement system (automated system operational, J. Iversen, SRF2009, THPP0071)

Figure 3: Average field flatness shift during welding

Figure 2: Layout of the FMS.

¹⁾ adopted from A. Schmidt et al., SRF2007, Beijing (China) & SRF2009 THPPO040

Some engineering wisdom

Shaping

Hydroforming avoids welds and hence is less time-consuming;
 Tubes are available at Plansee

But: the larger the cavity the more difficult is the hydroformin

Joining

- Discouraging experience with Stainless Steel brazings at HERA (leaks)
- Welding Nb SS possibly seems not possible (melting temperature different)
- Connection between cavity and He tank: Nb tube Nb ring NbTi flange - Ti tank

Flanges and gaskets

- Helicoflex not appreciated because it might emit particles
- Al diamond shaped gasket OK for NbTi flange; no leak problems
- But: 2 X higher etching rate for NbTi than for Nb (cover needed)

Experience from CERN -

Cavity weld to He vessel issues

J. P. Bacher, E. Chiaveri and B. Trincat, Brazing of niobium to stainless steel for UHV application in superconducting cavities, CERN/EF/RF 87-7, 5 December 1987

Fig. 3

The process shown in fig. 3 has been used to braze stainless steel flanges to niobium tubes which equip Nb superconducting cavities [3].

[3] G. Arnolds-Meyer et al., CERN/EF 87-9.