

saclay

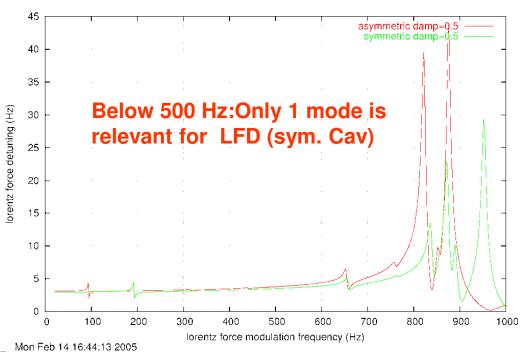
Cavity design

Fundamental parameters : frequency, beta, number of cells (gaps), Eacc

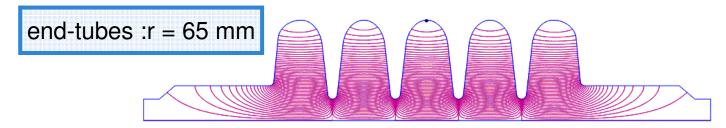
Optimisation : R/Q, surface fields / Eacc, Qex, damping of HOMs, kloss, cell to cell coupling Multipactor, surface preparation Sensitivity to LHe pressure, to LFD, to microphonics

saclay

Extraits des présentations CARE/HIPPI (G. Devanz, J. Plouin, S. Chel)

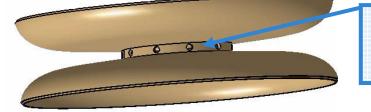

œ

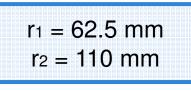
Example : HIPPI cavity

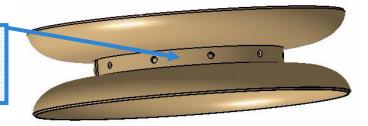

saclay

RF parameters

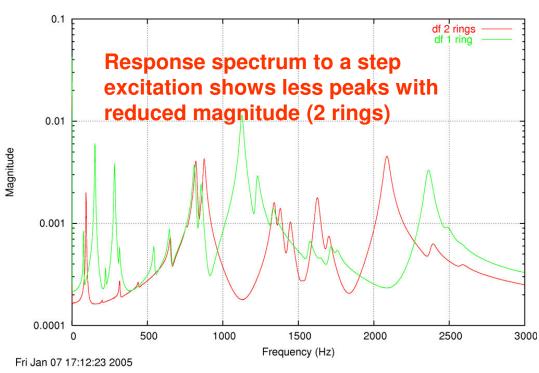
Frequency [MHz]	704
geom β	0.47
opt β	0.52
r/Q [Ω]	173.4
G [Ω]	161.2
Epeak/Eacc	3.36
Bpeak/Eacc	5.59

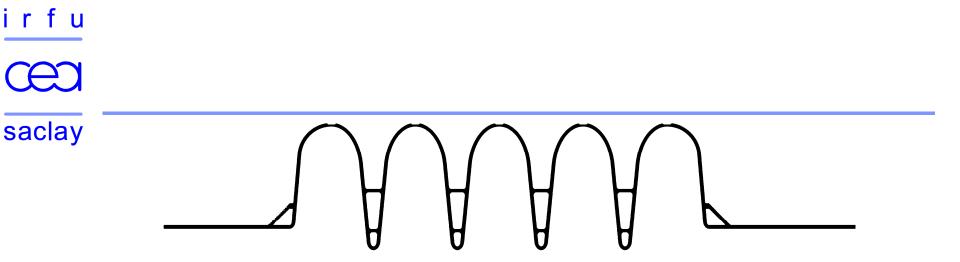

Design principle #1 : symetric end-tubes




œ

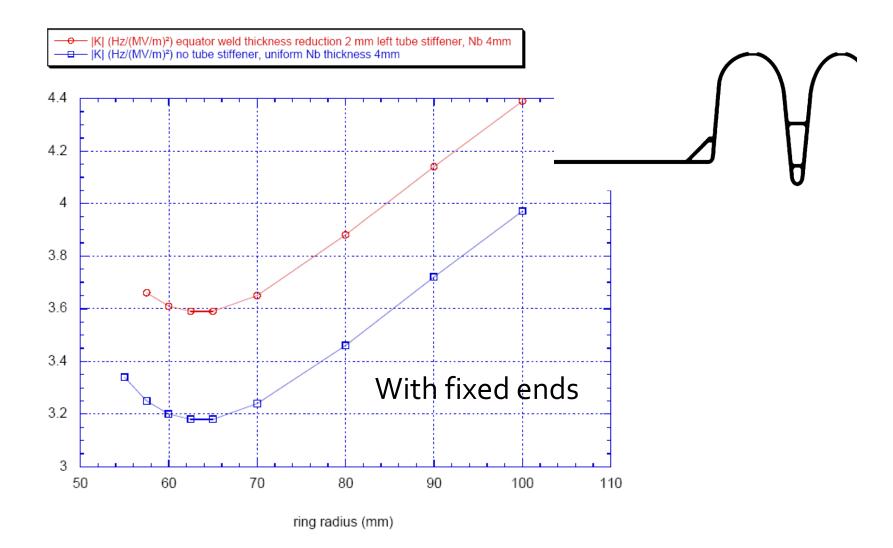
saclay


Design principle #2 : two sets of rings



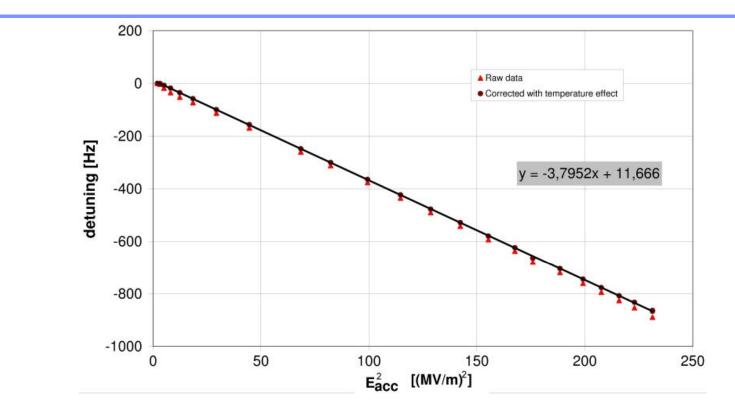
Strengthen the cavity w.r.t external pressure

Mechanical Par	ameters
Stiffness	2.25 kN/mm
Tuning sensitivity	308 kHz/mm
tuning stress	49 MPa/mm
Tuning range@ 300K assuming $\sigma y = 40$ MPa	+/- 250 kHz


Regulations \Rightarrow the cavity must sustain twice the maximum pressure

Max Pressure = 1.3 bar during test in vertical cryostat -> Preg = 2.6 bars

Structural FEM calculations with fixed ends Sym + 1 set of rings : max stress on beam tube iris 90 MPa Sym + 1 set of rings + stiffeners on beam tube iris : max stress around ring /cell junction 70 Mpa and 50 Mpa @ equator weld And with second set of rings: max stress @ stiffener/outer cell junction 40 MPa stress @ equator 29 MPa


œ

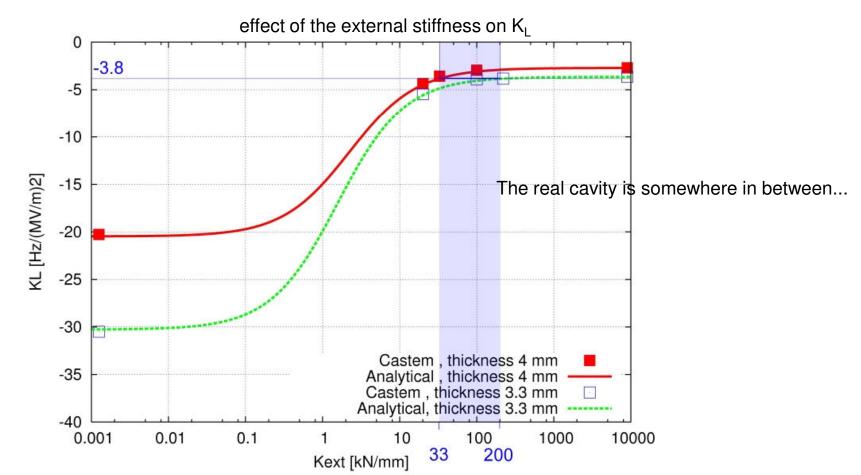
saclay

|K| (Hz/(MV/m)²)

Measurement of static LFD (1)

temperature changes during experiment -> pressure changes-> need for a correction of the frequency measurements (black dots)

Very good result KL = -3.8 Hz/MV/m


œ

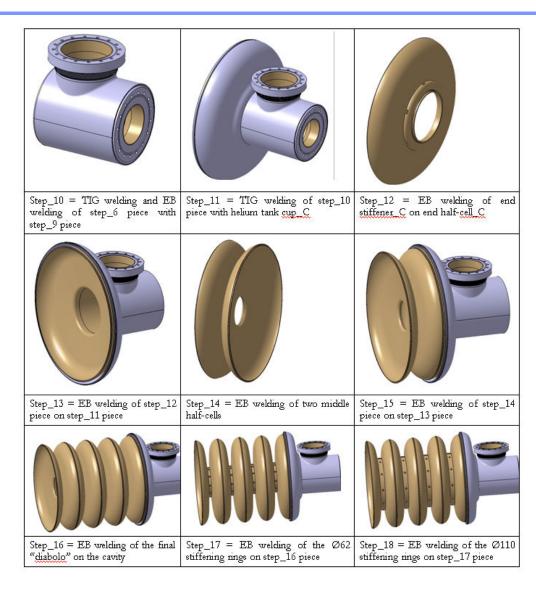
Measurement of static LFD (2)

saclay

taking into account the fact that the thickness of the real cavity is not constant: extreme cases :

- 4 mm theoretical basis for the design
- 3.3 mm average value measured on the real cavity on the non stiffened part of the cells

saclay


Other requirements:

-Global Stiffness > 50 kN/mm (shape of Helium tank) -Appropriate cooling of the FPC (port inside the helium tank) -Provide enough space for PU port, tuning system, HOM ports -Ability to add stiffening rods for tests w/o tuning system

CEC saclay

	471	
Step_1 = EB welding of \emptyset 80 beam tube _C with conical ring _C	Step_2 = brazing of end-flange_C on step_1 piece	Step_3 = EB welding of step_2 piece with Ø130 beam tube _C
Step_4 = EB welding of step_3 piece with coupler tube	Step_5 = TIG welding of step_4 piece with helium tank top cylinder	Step_6 = TIG welding of step_5 piece with helium tank bottom cylinder
Step_7 = brazing of the coupler flange on the coupler tube	Step_8 = TIG welding of the bellow with the step_7 piece	Step_9 = TIG welding of the ring with the step_8 piece

œ


CEC saclay

Step_19 = EB welding of Ø80 beam tube _P on conical ring _P	Step_20 = brazing of end- <u>flange_P</u> on step_19 piece	Step_21 = EB welding of step_20 piece with Ø130 beam tube_P
Step_22 = brazing of the Pick-up flange with the Pick-up tube	Step_23 = EB welding of step_22 piece on step_21 piece	Step_24 = brazing of the helium tank end disk with the H shape ring
Step_25 = EB welding of step_24 piece on step_23 piece	Step_26 = EB welding of end half- cell_P (with already welded end stiffener_P) on step_25 piece	Step_27 = EB welding of step_25 piece on step_26 piece FIRST DELIVERY TO CEA-S aday

CED

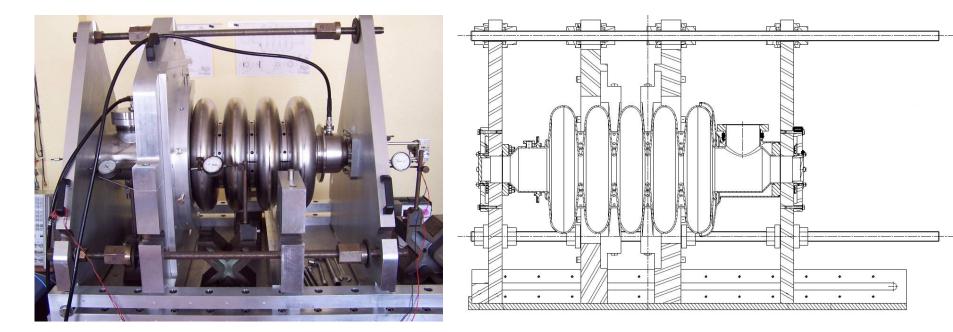
saclay

AISI 316LN bellows after 650° heat treatment=ok

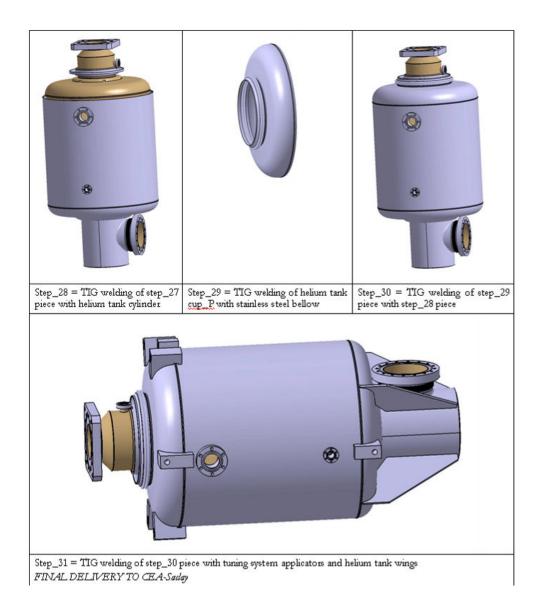
Fabrication of the Niobium cavity

- Dimension controls and visual inspection (endoscope)
- •Degreasing in ultra-sonic bath
- Vacuum test ; frequency+ dispersion curve measurement
- Preparation of the antenna for cold test in cert. crypstat
- •Chem. polishing on the inner face (FNP 1-1-2, 150 um)
- •Ultra-pure water rinsing
- Field flatness ; frequency+ dispersion curve measurement
- Degreasing in ultra-sonic bath
- •Heat treatment at 650 ° for 24 hours (<10-6 mbar)
- *Field flatness ; frequency+ dispersion curve measurement*
- •Chem. polishing on the inner face (FNP 1-1-2, 20 um)
- Ultra-pure water rinsing
- •HPR, drying, cavity assembly and vacuum test in CR
- •Cold test in vertical crypstat with a fast cool down
- Cold test in vertical crypstat with a slow cool down
- Slow admission of CR air in the cavity up to 1 bar
- Sealing up of the artity in CR ; delivery to manufacturer

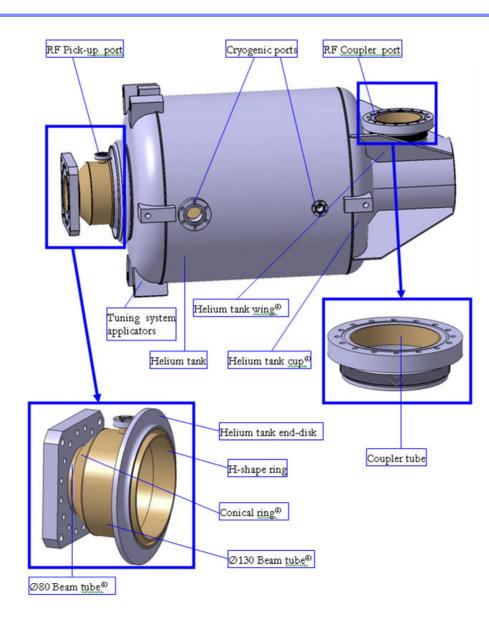
irfu


(e)

saclay

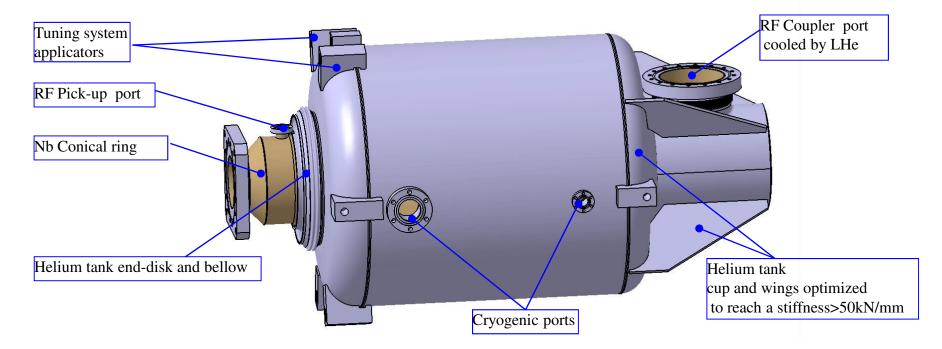

Set-up for adjustment of field flatness

				С.	22	2													-		14	10	23									22	ю.													
				r	8.8		68		83				x			×				8	R	63			×			83	x			х.	12	83				8			83	83				
				٠	60	2	8	v		۰.		ı		۰.	8	1		x		5	5	н		1	2	×.	1	2	2	ë.	r	а	В.	0		2	1	c	۰.	r	r	•				
				20	2.7					8	н					×		7		8	3	8					88	-				21		2							-	-				
			а	L		8	н	L		2	А	Ŀ			2	č.	а,	n		8	13	9		L				53			E	8	10		а.						67	э	63			
				2			83	г							88		-			91	-3	82		۵.	2		88		a.	10	•	е.	Э.	С.		68						~				
							0																																							


Plastic deformation DL [mm]	2
Cavity axis & set-up axis parallelism [°]	2
Total axial displacement [mm]	5
Precision of axial displacement [mm]	0.5

œ

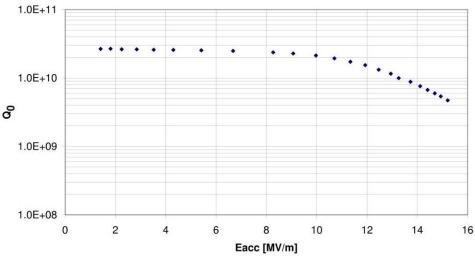
œ



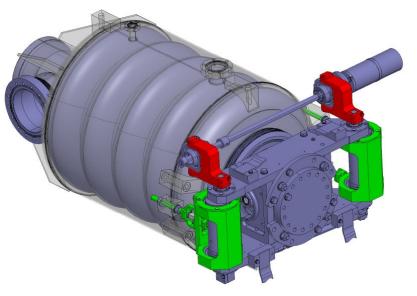
œ

saclay

End of Helium tank fabrication without opening the cavity (sealed up with clean air)
Vacuum test of the Helium tank and mandatory controls
Delivery to CEA-Saclay


At the end of Phase 2, the cavity is ready for preparation, measurements and cold tests in horizontal cryostat

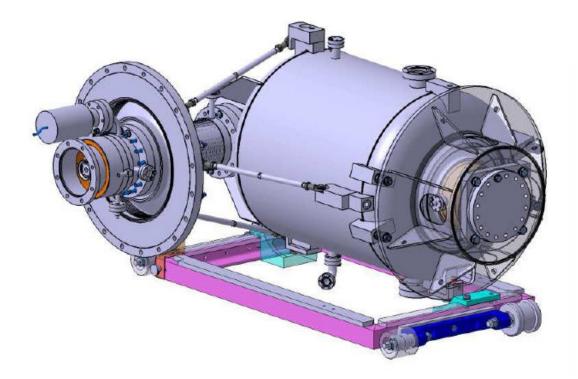
$\beta = 0.47$ cavity tested in vertical cryostat


i r

- cavity equipped with the helium tank (left open for the tests)
- stiffening rods replaced by a compact stiffener to reduce the effect of k_{ext} on the static Lorentz detuning coefficient KL
- test at 1.8 K after HPWR only (no new BCP since the first test)

- Rs = 6 nW
- Field emission onset 12 MV/m
- Quench at 15 MV/m

Système d'Accord: Saclay IV

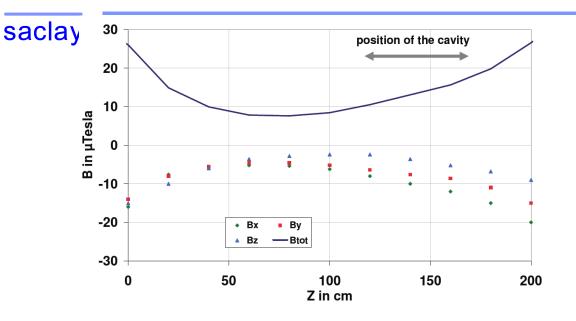


- design based on Soleil, 3HC, CARE-SRF (aka Saclay-II) family of tuners
- symmetric slow tuning +/- 2.5 MHz
- planetary gear box for reliability
- single piezo frame with preload independent of cavity tuning
- does not increase cavity length

Assembly with

- ${\rm v}~$ cavity + sealed coupler (including window) have to be inserted in CRYHO cavity has to be set off center
- v heavy coupler flange + window have to be supported during installation
- v the tray can be cleaned and used in the clean room.

œ

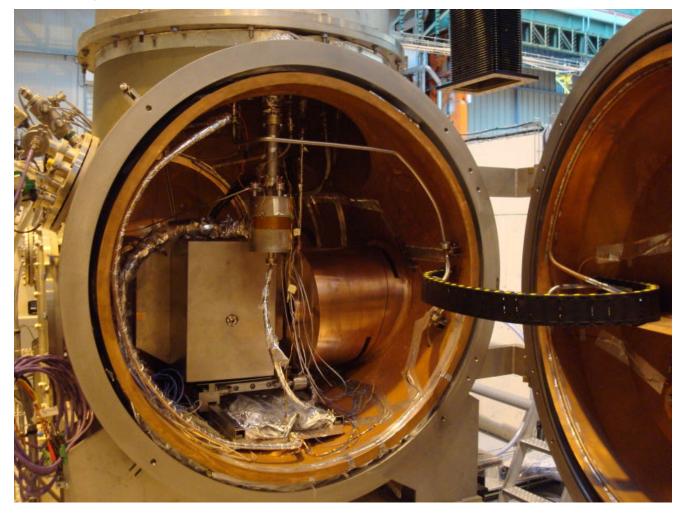


Magnetic shield

- Rs=6n Ω in vertical cryostat, low Eacc, 1.8 K
- Aiming at Rs < 8 n Ω in CryHoLab
- B<0.6 mT

i r

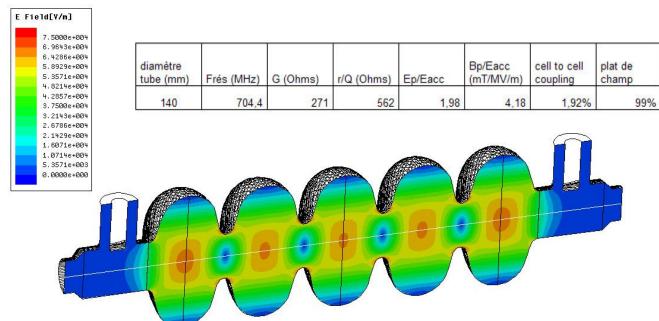
fu



Cryoperm® material theoretical shielding factor 33 (opera 3D simulations)

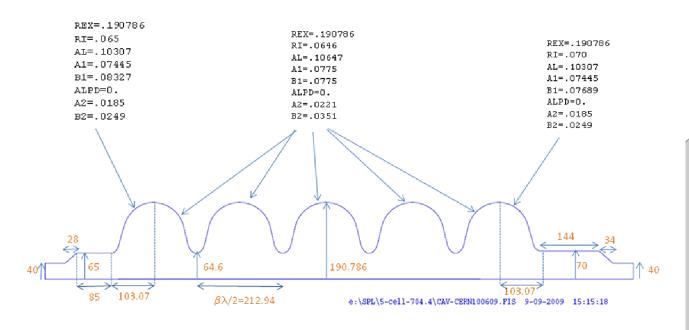
œ

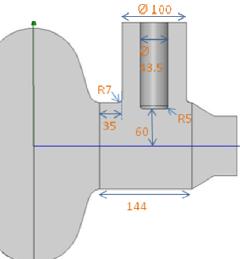
saclay


700 MHz setup

œ

saclay


Cavité SPL_HE_v1 (704 MHz - β =1)


beta	Eacc [MV/m]	K _L [Hz/(MV/m)²]	detuning statique [Hz]
o.47 (HIPPI)	15	-3.8 (mesure)	855
0.65 (SPL)	19	-2 (calcul cavité similaire)	720
1 (SPL)	25	-o.5 (calcul)	313
1(TTF)	25	-0.7 (mesure)	438

œ

saclay

Cavité SPL_HE_v2 (704 MHz - β =1)

