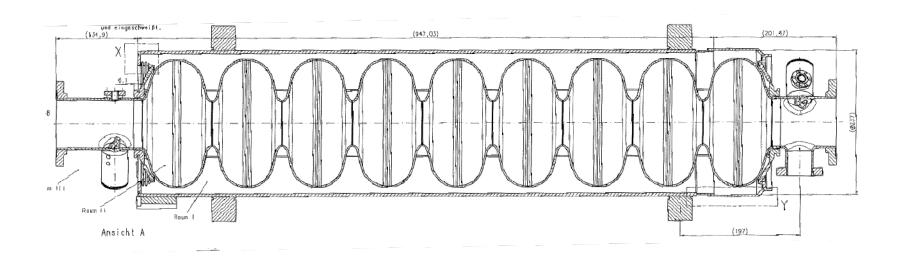

Material choice

Ofelia Capatina

Material choices

- Discuss material choices for
 - Helium tank
 - Flanges, joints, bellow


Choice between:

- Titanium alloy: DESY technology (which alloy is used at DESY?)
- Stainless steel

- Material choice involves differences in:
 - Manufacturability
 - Feasibility of connection to cavity
 - Heat treatment / sequence
 - Interface to cryogenic piping
 - Tuner design
 - Material compliance with pressure vessel regulations
 - Overall price

- Manufacturability:
 - Titanium alloy
 - Proven technology at DESY
 - Requires:
 - Specialized technicians
 - Special equipment
 - Know-how?
 - Stainless steel:
 - Conventional procedures and equipment

- Feasibility of connection to cavity:
 - Titanium alloy
 - Via titanium-niobium alloy flange
 - EB welding between Nb and Ti52 Nb48 flange
 - EB welding between Ti52 Nb48 flange and titanium tank

- Feasibility of connection to cavity:
 - Stainless steel:
 - Brazing
 - SS brazing on small Nb part
 - EB welding of SS/Nb assembly on cavity Nb
 - Feasibility to be proved ?

- Explosion bonding
 - R&D required ?

- Heat treatment / sequence :
 - Titanium alloy
 - Comparable to DESY sequence ?

- Stainless steel
 - Annealing with respect to brazing?
 - Protection during chemical treatments
 - ...

- Interface to cryogenic piping
 - Titanium alloy
 - Bi-metallic transitions
 - R&D required to prove reliability with Hell operation?
 - Flanges
 - Leak-tightness reliability with Hell operation?
 - Stainless steel
 - Welding (conventional)
 - Flanges
 - Leak-tightness reliability with Hell operation?
- ! Experience from LHC: all interconnects to be done after installation, inside the tunnel should include only conventional operations

- Tuner design:
 - Titanium alloy
 - Existing CEA tuner design adaptable to
 - Thermal contraction equivalent to Nb thermal contraction =>

Tuner stroke smaller than for SS helium tank

Stainless steel

- Thermal contraction ~ twice the Nb thermal contraction
- Tuner design to adapt / redevelop for much more important stroke
- Equivalent stroke as for Ti material if cavity assembly design to compensate differential thermal contraction (risk of high thermal stresses ?)

- Material compliance with pressure vessel regulations :
 - Ti alloy
 - Stainless steel

- Overall price:
 - For equivalent stiffness we have

```
Price He tank Ti / Price Helium tank SS = Price 1 kg Ti / Price 1 kg SS Since we have E Ti / \rho Ti = E Ti / \rho Ti (Calculated for Ti 6Al 4V ELI and 316LN)
```

Thus Price He tank Ti / Price Helium tank SS ≈ 4 (100 CHF / 25 CHF)

- Material price: for 260 cavities, the price for the material would be:
 - 316LN: ≈ 300'000 CHF
 - Ti 6Al 4V ELI: ≈ 1'200'000 CHF
- Additional material cost if additional Titanium needed (pipes, bellows etc)

- Overall price:
 - On top of material price add:
 - Special procedures, material and specialized technicians for Ti alloy
 - Tuner re-design for Stainless Steel to cope with larger stroke

Flanges, joints, bellow

Same analysis should be made as for He tank material

- Material choice involves differences in:
 - Manufacturability
 - Feasibility of connection to cavity
 - Heat treatment / sequence
 - Interface to cryogenic piping
 - Tuner design
 - Overall price