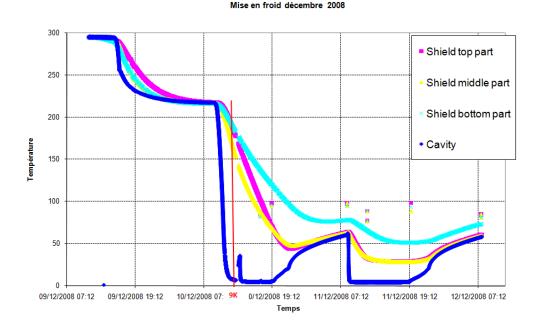

Magnetic shield for SPIRAL2

- Sensitivity: 0.1-0.2 nOhm/mG
- Goal: Hresidual<20 mG (Rbcs~2.5 nOhm @4K and 88MHz)
- Typical values for Earth's magnetic fields
 - H_{long}= 430 mG
 - H_{trans}= 200 mG
- Formula (single-layer)
 - S_{trans}= 1+µ.e/2R; e=thickness, R=shield radius
 - S_{long} proportionnal but < to S_{trans}

 \Rightarrow Easier to shield horizontal cavities like elliptical rather than vertical ones

- Magnetic shield for 4K application \Rightarrow Cryoperm
- Guarantied values from suppliers
 - µ=12000 (SEKELS)
 - µ=16250 (AMUNEAL)



	Single layer	Dual layer
e (mm)	1.5	1
S _{trans}	58 (58)	145 (143)
S _{long}	22.5 (28)	42 (60)
Hresidual (mG)	19.5 (15.8)	10.4 (7.3)

Cool down

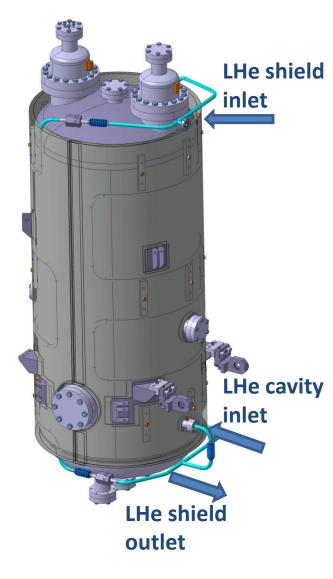
- 1.5 mm thick Cryoperm, single layer
- In contact with He vessel: cool down by conduction
 + copper braids

• Bad thermalization: magnetic shield temperature still > 150K when Tcavity is < 9K

Cool down

 New cool down with copper wool between the magnetic shield and the He vessel on the bottom of the shield only → better thermalization

 Bottom part @50K but top and middle parts are still > 150K



Mise en froid janvier 2009

New design

- Dual-layer in Cryoperm (1mm)
- Pre-cooling: SS tubing between the two layers (welded on the inner shield)
- Outer shield screwed on copper spacers
- Expected Hresidual divided by 2 as compared to singlelayer option
- Main concern: cavity could stays for hours (how many?) between 150K and 50K while the shield temperature is getting down to 4K

