Search for QCD Critical Point with Fluctuations of Conserved Quantities in Heavy-ion Collisions

Status and Prospective

Xiaofeng Luo (罗晓峰)

Central China Normal University April 16, 2018

Heating to Trillion Degrees

Steam engine and Industry Revolution **Quark-gluon engine ??**

Heat the Water -> Vapor 100°C

Quark-gluon plasma 10¹² °C

3rd CBM-China Workshop@Yichang, April 16-18, 2018

QCD Phase Structure and Beam Energy Scan

Xiaofeng Luo

Location of CEP: Theoretical Prediction

Lattice QCD: 1): Fodor&Katz, JHEP 0404,050 (2004): $(\mu^{E}_{B}, T_{E}) = (360, 162) \text{ MeV} (\text{Reweighting})$

2): Gavai&Gupta, NPA 904, 883c (2013) $(\mu^{E}_{B}, T_{E}) = (279, 155) \text{ MeV}$ (Taylor Expansion)

3): F. Karsch et al. NPA 956, 352 (2016). (μ^{E}_{B} / T_E >2)

DSE:

1): Y. X. Liu, et al., PRD90, 076006 (2014); 94, 076009 (2016).

 $(\mu^{E}_{B}, T^{E}) = (372, 129); (262.3, 126.3) \text{ MeV}$ 2): Hong-shi Zong et al., JHEP 07, 014 (2014). $(\mu^{E}_{B}, T_{E}) = (405, 127) \text{ MeV}$ 3): C. S. Fischer et al., PRD90, 034022 (2014).

$$(\mu^{E}_{B}, T^{E}) = (504, 115) \text{ MeV}$$

 μ^{E}_{B} =262 ~ 504 MeV, T_E = 115~162, μ^{E}_{B} / T_E =1.74~4.38

Experimental facility to study the high baryon density region

STAR Detector

Xiaofeng Luo

3rd CBM-China Workshop@Yichang, April 16-18, 2018

Beam Energy Scan - I (2010-2017)

- Large and homogeneous acceptance at mid-rapidity.
- STAR has good opportunity to explore the QCD phase structure by accessing broad region of phase diagram.

Cumulants of Conserved Charges Distributions

The cumulants of conserved charges (B, Q, S) in grand canonical ensemble are extensive variables, and are directly connected to the susceptibility of the system.

$$C_{n,q} = VT^{3}\chi_{q}^{(n)} = \frac{\partial^{n}(p/T^{4})}{\partial(\mu_{q}/T)^{n}}, \qquad q = B,Q,S$$

Cancel out the volume dependence by taking ratios of cumulants:

S. Ejiri et al, Phys.Lett. B 633 (2006) 275. B. Friman et al., EPJC 71 (2011) 1694. F. Karsch and K. Redlich, PLB 695, 136 (2011). S. Gupta, et al., Science, 332, 1525(2012).

Observables measured at STAR

Cumulants of the event-by-event net-proton, net-charge and net-kaon distributions.

Net-Proton: $N_p - N_{\overline{p}}$ $0.7 \quad \kappa > 0$ (Net-Baryon, B) 0.6 0.5 \blacktriangleright Net-Charge: $N_{o^+} - N_{o^-}$ 0.4 $\kappa < 0$ 0.3 0.2 > Net-Kaon: $N_{K^+} - N_{K^-}$ 0.1 - 5 - 4 - 3 - 2 (Net-Strangeness, S) $\frac{C_{4,q}}{C_{2,q}} = \kappa \sigma^2 \propto \xi^5$ $C_{2,a} \propto \xi^2, C_{3,a} \propto \xi^{4.5}, C_{4,a} \propto \xi^7$ $\frac{C_{3,q}}{C_{2,q}} = S\sigma \propto \xi^{9/4}$

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009). M.Asakawa, S. Ejiri and M. Kitazawa, Phys. Rev. Lett. 103, 262301 (2009).

Xiaofeng Luo

0 -0.59376 -1 -1.2

 $\kappa = 0$

2

Analysis Details

	Net-Charge	Net-Proton	Net-Kaon	
Kinematic cuts	0.2 < p _τ (GeV/c) < 2.0 η < 0.5	0.4 < p _T (GeV/c) < 2.0 y < 0.5	0.2 < p _T (GeV/c) < 1.6 y < 0.5	
Particle Identification	Reject protons form spallation for $p_{T} < 0.4$ GeV/c	$0.4 < p_T$ (GeV/c) < 0.8 → TPC $0.8 < p_T$ (GeV/c) < 2.0 → TPC+TOF	0.2 < p_{T} (GeV/c) < 0.4 → TPC 0.4 < p_{T} (GeV/c) < 1.6 → TPC+TOF	
Centrality definition, → to avoid auto-correlations	Uncorrected charged primary particles multiplicity distribution	Uncorrected charged primary particles multiplicity distribution, without (anti-)protons	Uncorrected charged primary particles multiplicity distribution, without (anti-)kaons	
	$0.5 < \eta < 1.0$	$ \eta < 1.0$	$ \eta < 1.0$	
TOF PID	T	PC PID	Phase Space	
$\begin{array}{c} 1.2 \\ 1.2 \\ 0.8 \\ 0.8 \\ 0.9 \\ 0.6 \\ 0.6 \\ 0.2 \\ 0 \\ -0.2 \\ -2.5 \\ -2 \\ -2.5 \\ -2 \\ -1.5 \\ -1 \\ -0.5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	10^4 10^4 10^4 10^4 10^4 10^4 10^4 10^4 10^2 10^3 10^2 10^3 10^2 10^3 10^2 10^2 10^4	$\begin{array}{c} 10^{4} \\ 10^{3} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	14.5GeV TPC+TOF TPC 0	

Xiaofeng Luo

p*q (GeV/c)

3rd CBM-China Workshop@Yichang, April 16-18, 2018

1

2

p*q (GeV/c)

-2

-1

Proton Rapidity

Data Analysis Methods

Effects needed to be addressed to get final moments/cumulants:

- 1. Avoid auto-correlation effects: New centrality definition.
- 2. Suppress volume fluctuation: Centrality bin width correction
- 3. Finite detector efficiency correction

X.Luo, et al. J. Phys. G39, 025008 (2012); A. Bzdak and V. Koch, PRC86, 044904 (2012); X.Luo, et al. J. Phys. G40,105104(2013); X.Luo, Phys. Rev. C 91, 034907 (2015); A . Bzdak and V. Koch, PRC91, 027901 (2015). T. Nonaka et al., PRC95, 064912 (2017). M. Kitazawa and X. Luo, PRC96, 024910 (2017).

Review article : X. Luo and N. Xu, Nucl. Sci. Tech. 28, 112 (2017). [arXiv: 1701.02105]

Forth Order Fluctuations of Net-P, Net-Q, Net-K

STAR, PRL105,022302 (2010); STAR, PRL112,032302 (2014). STAR, CPOD 2014, QM 2015 STAR, PRL113,092301 (2014) STAR, to PLB [arXiv: 1709.00773]

1. Large errors are observed in Q and S fluctautions, Statistical Errors: Q > S > B. 2. Non-monotonic energy dependence observed in 4th order net-proton fluctuations.

Xiaofeng Luo

1. Effective model calculations (Static): σ field Model, NJL, PNJL, PQM, VDW+HRG, Mean field

M. A. Stephanov, PRL107, 052301 (2011). Schaefer&Wanger,PRD 85, 034027 (2012); JW Chen, JDeng et al., PRD93, 034037 (2016), PRD95, 014038 (2017) W. K. Fan, X. Luo, H.S. Zong, IJMPA 32, 1750061 (2017); arXiv: 1702.08674 Vovchenko et al., PRC92,054901 (2015); PRL118,182301 (2017) K. Fukushima, Phys.Rev. C91 (2015) no.4, 044910; Weijie, Fu et al, Phys.Rev. D94 (2016), 116020 M. Huang et al., arXiv:1706.02238, Ju Xu et al, arXiv:1709.05178, Guoyun Shao et al.,arXiv:1708.04888

2. Dynamical evolution of critical fluctuations: Study nonequilibrium effects

Swagato et al, PRC92,034912 (2015). PRL117, 222301 (2016); M. Nahrgang, et al. EPJA 52, 240 (2016). C. herold Phys.Rev. C93 (2016) no.2, 021902 L. Jiang et al. arXiv: 1704.04765

3. Non-critical background: HRG, UrQMD, JAM, AMPT, Hydro+UrQMD

Z. Feckova, et al., PRC92, 064908(2015). P.K. Netrakanti et al, NPA947, 248(2016), P. Garg et al. Phys. Lett. B726, 691(2013).J.H. Fu, arXiv: 1610.07138; Phys.Lett. B722 (2013) 144-150; M. Bluhm, EPJC77, 210 (2017). J. Xu, YSL, X. Luo, F. Liu, PRC94, 024901 (2016) ; S. He, X. Luo, arXiv:1704.00423, C. Zhou, et al., PRC96, 014909 (2017). S. He, et al., PLB762, 296 (2016). L. Jiang et al., PRC94, 024918 (2016). H.J. Xu, PLB 2017. Huichao et al., arXiv:1707.09742

Efficiency Correlation and Error Estimation

We can express the cumulants in terms of the factorial moments, which can be easily efficiency corrected by assuming binomial response function for efficiency.

$$F_{u,v,j,k}(N_{p_1}, N_{p_2}, N_{\bar{p}_1}, N_{\bar{p}_2}) = \frac{f_{u,v,j,k}(n_{p_1}, n_{p_2}, n_{\bar{p}_1}, n_{\bar{p}_2})}{(\varepsilon_{p_1})^u (\varepsilon_{p_2})^v (\varepsilon_{\bar{p}_1})^j (\varepsilon_{\bar{p}_2})^k}$$

A. Bzdak and V. Koch, PRC91, 027901 (2015). X. Luo, PRC91, 034907 (2015);

Statistical Errors based on Delta Theorem.
 With same N events: error(net-charge) > error(net-kaon) > error(net-proton)

Au+Au 14.5GeV	Net-Charge	Net-Proton	Net-Kaon
Typical Width(σ)	12.2	4.2	3.4
Average efficiency(ε)	65%	75%	38%
σ²/ε²	355	32	82

Those numbers are for illustration purpose and not used in actual analysis

$$error(S\sigma) \propto \frac{\sigma}{\varepsilon^{3/2}}$$

 $error(\kappa\sigma^2) \propto \frac{\sigma^2}{\varepsilon^2}$

Efficiencies for Protons and Anti-protons

Au + Au Collisions at RHIC

Fraction of Collision Centralities (%)

- > Due to TOF matching eff., high p_T efficiency (~50%) are smaller than low p_T (~80%).
- Efficiency decrease with increasing energies and centralities.
- Proton Efficiency > Anti-proton Efficiency

Net-Proton, Proton and Anti-Proton Cumulants (C₁~C₄)

- 1. Efficiency corrections are important for both value and statistical errors.
- 2. Generally, cumulants are linearly increasing with $\langle N_{part} \rangle$.
- 3. At low energies, the proton cumulants are close to net-proton.

Energy Dependence of Net-Proton Fluctuations

Colliding Energy $\sqrt{s_{NN}}$ (GeV)

Clear non-monotonic energy dependence is observed in the fourth order net-proton fluctuations in 0-5% central Au+Au collisions.

First observation of the non-monotonic energy dependence of fourth order net-proton fluctuations. Hint of entering Critical Region ??

STAR Data

σ field Model

Critical signal: Oscillation Structure

STAR, PRL105,022302 (2010); PRL112,032302 (2014). STAR, CPOD2014 and QM2015

M. A. Stephanov, PRL102, 032301 (2009). M. A. Stephanov, PRL107, 052301 (2011).

NJL Model Calculations

- 1) Due to large mass of s quark, CP Signals in Q and S are much smaller than B.
- 2) Forth and third order fluctuations have very different behavior.

W. K. Fan, X. Luo, H.S. Zong, IJMPA 32, 1750061 (2017). JW Chen, JDeng et al., PRD93, 034037 (2016), PRD95, 014038 (2017)

1200

Acceptance Dependence

B. Ling, M. Stephanov, Phys. Rev. C 93, 034915 (2016).
A. Bzdak, V. Koch, Phys.Rev. C95, 054906 (2017)
M. Kitazawa, X. Luo, PRC96, 024910 (2017).

Signals can be enhanced by enlarging the acceptance.

Xiaofeng Luo

X. Luo (for the STAR Collaboration), PoS(CPOD2014)019 [arXiv:1503.02558].

Four particle correlation dominated the nonmonotonic behavior observed in forth order net-proton fluctuations.
$$\begin{split} C_2 = &< N > + \hat{\kappa}_2 \\ C_3 = &< N > + 3\hat{\kappa}_2 + \hat{\kappa}_3 \\ C_4 = &< N > + 7\hat{\kappa}_2 + 6\hat{\kappa}_3 + \hat{\kappa}_4 \end{split}$$

Proton Cluster formation: A. Bzdak, V. Koch, V. Skokov, Eur. Phys. J., C77, 288(2017)

Transport Model Results : Net-Proton $\kappa\sigma^2$

At $\sqrt{s_{NN}} \le 10$ GeV: Data: $\kappa \sigma^2 > 1$ Model: $\kappa \sigma^2 < 1$ > Model simulation :*All suppress the net-proton fluctuations.* (*UrQMD, AMPT, HRG, JAM cannot reproduce data*)

- Z. Feckova, J. Steonheimer, B. Tomasik, M. Bleicher, PR<u>C92</u>, 064908(2015). J. Xu, S. Yu, F. Liu, X. Luo, PR<u>C94</u>, 024901(2016). X. Luo *et al*, NP<u>A931</u>, 808(14), P.K. Netrakanti *et al.* 1405.4617, NP<u>A947</u>, 248(2016), P. Garg *et al*. Phys. Lett. <u>B726</u>, 691(2013).
- 2) S. He, X. Luo, Y. Nara, S. Esuimi, N. Xu, Phys.Lett. B 762, 296 (2016).
- 3) S. He and X. Luo, , Phys.Lett. **B 774**, 623 (2017).

Future Plan for QCD Critical Point Search

- 1. Need precision measurement between 7.7 to 20 GeV
- 2. Need lower energy data points.

CBM/STAR FXT/HADES/NICA Experiments

STAR Upgrades for BES Phase-II

- 1) Enlarge rapidity acceptance
- 2) Improve particle identification
- 3) Enhance centrality/EP resolution

iTPC, EPD, eTOF Dedicated two runs at RHIC: 2019 & 2020

Ζ4

2019-2020: BES-II at RHIC

√s _{NN} (GeV)	Events (10 ⁶)	BES II / BES I	μ _B (MeV)	T _{CH} (MeV)
200	350	2010	25	166
62.4	67	2010	73	165
54.4	1200	2017	83	165
39	39	2010	112	164
27	70	2011	156	162
19.6	400 / 36	2019-20 / 2011	206	160
14.5	300 / 20	2019-20 / 2014	264	156
11.5	230 / 12	2019-20 / 2010	315	152
9.2	160 / 0.3	2019-20 / 2008	355	140
7.7	100 / 4	2019-20 / 2010	420	140

BES-II: Precise mapping the QCD phase diagram 200 < µ_B < 420MeV

FXT Experiments at STAR (2018-2019)

Clear non-monotonic energy dependence is observed in the netproton kurtosis at most central Au+Au collision. A hint of entering critical region. Need to confirm with more statistics and lower energies data.

- Model simulation (No CP) indicates: Baryon conservations, Meanfield potential, hadronic scattering, Deuteron formation. All suppress the net-proton fluctuations.
- Within current uncertainties, net-charge and net-kaon fluctuations show flat energy dependent. Need more statistics.
- Study the QCD phase structure at high baryon density with high precision:
 - (1) BES-II at RHIC (2019-2020, both collider and fix target mode).
 - (2) Fix-target at low energies (BES-III): CBM, NICA, CEE, JPARC.
 - (3) Need dynamical modeling of the critical fluctuations in HIC.

Thank you !

Xiaofeng Luo

3rd CBM-China Workshop@Yichang, April 16-18, 2018