Dilepton Results from STAR BES-I

Xiaolong Chen (陈小龙)、Yifei Zhang (张一飞)

University of Science & Technology of China

CBM-China Workshop, Yichang April 16-18, 2018

Outline

Introduction and motivation

- Dielectron production from RHIC BES-I
- ♦ Future prospects
- ♦ Summary

Introduction: EM penetrating probes

Do not participate in strong interactions. Bring undistorted information as where produced. Penetrate medium properties.

Challenge: Time-space integrated from every stages. Continuum at IMR.

Drell-Yan

IMR

HMR

Heavy quark correlation

Heavy quarkonia production

QGP thermal radiation

Introduction: in-medium modifications

Low mass excess was observed in previous experiments.

Vacuum ρ unable to describe data.

Rule out Dropping-Mass Scenario (Brown-Rho).

Good agreement with broadening of ρ spectral function (Rapp-Wambach).

Introduction: hadronic vs partonic

LMR: inversed slopes show mass dependence
-- hadronic process dominate, radial flow
IMR: no indication of mass dependence
-- thermal radiation from partonic phase
Energy dependence of the slopes could be sensitive to the medium dynamics.

Dilepton at RHIC top energy

LM excess observed consistent with ρ in-medium modification - possible link to chiral symmetry restoration.

11/04/18

Yifei Zhang / USTC

What about low energies?

Yifei Zhang / USTC

RHIC BES program

Yifei Zhang / USTC

Dilepton excess spectra in BES-I

Dilepton excess spectra in BES-I

Consistent with ρ in-medium modification.

Dilepton excess spectra in BES-I

AuAu@19.6,200: STAR, PLB750 64 2015 AuAu@27,39,62&UU@193: S. Yang, Quark Matter 2015 InIn@17.3: NA60, EPJ C59 607 2009 Theory: R. Rapp, PRC 63 (2001) 054907

Consistent with ρ in-medium modification. Weak collision energy dependence => Leptons are blindly emitted in HG + QGP.

Excess yield and medium life time

IMR signal / background

M_{T} slope at IMR

M_T slope at IMR

Possible observation at phase transition?

Both T_{eff} and its slope κ in medium are significant higher than the system w/o medium.

Phase transition could happen if the T_{eff} increases dramatically or the sign of its slope κ changes from negative to positive.

Projection of Run 18&19

- With 2-3 weeks data taken, the low mass statistics will be significantly improved.
- > Possible access for QGP radiation component at IMR.

BES Phase II

- ♦ Electron cooling will provide increased luminosity.
- \Rightarrow **iTPC** + HFT + MTD upgrades
- \diamond Enables increased statistics for the BES energies
- ♦ Statistics enriched data for rare probes, especially for dilepton measurements.

Proposed energies for BES-II (Years 2019-2020):

√S _{NN} (GeV)	7.7	9.1	11.5	14.5	19.6
μ_{B} (MeV)	420	370	315	250	205
BES II (MEvts)	100	160	230	300	400

Projection with iTPC for BES-II

- Systematically study dielectron continuum from 7.7 19.6 GeV.
- Inner Time Projection Chamber (iTPC) upgrade: reduce uncertainties.
- Quantify different models.
- Study total baryon density effect at lower energies from BES-II.

Opportunity at BES-II

Possible chance for QGP radiation at IMR.

Phase transition, QGP turn-off signature, baryon density dependence.

. . .

Excess of dielectron at very low p_T at RHIC STAR

Significant excess with respect to hadronic cocktail in peripheral Au + Au and U + U collisions!

Excess observed over the whole measured mass region!

Excess of dielectron at NICA & CBM

Considerable production rate and softer mass spectrum at NICA & CBM

Summary

♦ Dielectron mass spectra in 19.6 - 200 GeV Au+Au were measured by RHIC-STAR.

Low mass enhancement was observed and can be well described by model calculations with broadening ρ mass spectra function for all collision energies and systems at RHIC and SPS.

♦ The normalized excess yield is proportional to the medium life time from 17.3 to 200 GeV Au+Au collisions and 193 GeV U+U collisions.

♦ STAR future Runs and upgrades enable further exploration of the dilepton continuum.

- -- QGP thermal radiation
- -- Correlated charm modifications

Thank you!