LHCb anomaly and B physics in flavored Z' models with flavored Higgs doublets

Yoshihiro SHIGEKAMI (Nagoya U.)

with P. Ko (KIAS), Y. Omura (Nagoya U., KMI), C. Yu(Korea U.) Phys. Rev. D 95 115040 (2017)

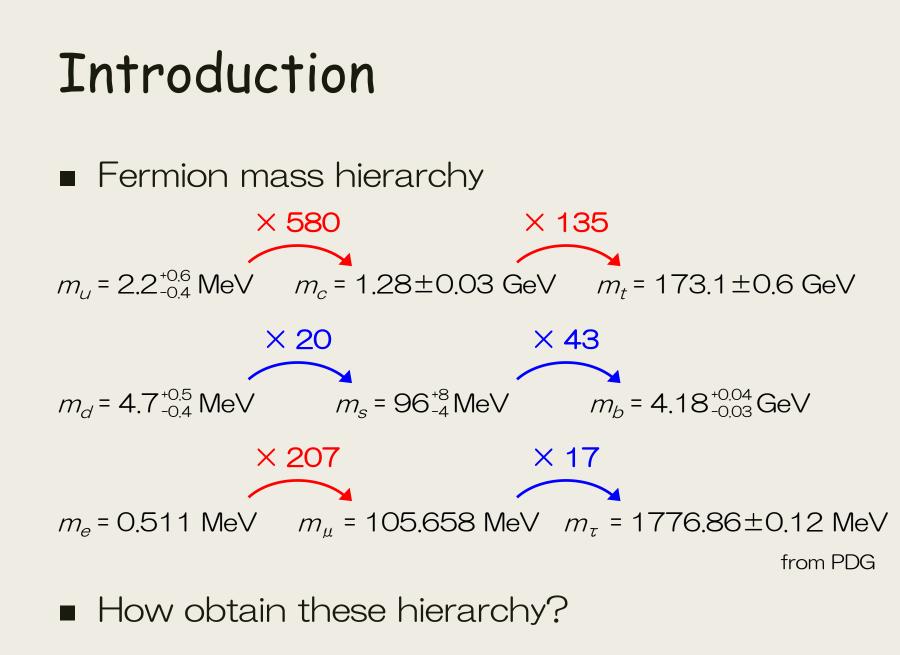
The 3rd Winter Toyama Mini-Workshop on Particle Physics and Cosmology, BURI2018 1/16 \sim 1/17

The SM can explain almost all the exp. data

However, there are some problems

- fermion mass hierarchy 🔶
- charge quantization
- dark matter

These are hints of physics beyond the SM



We consider U(1)' extended model

flavored Higgs doublets model P. Ko, Y. Omura, YS, C. Yu, PRD 95, 115040 (2017)

 \checkmark all fermions have flavor dependent charge

✓ new Higgs doublets for Yukawa couplings

 \rightarrow can explain SM fermion mass hierarchy

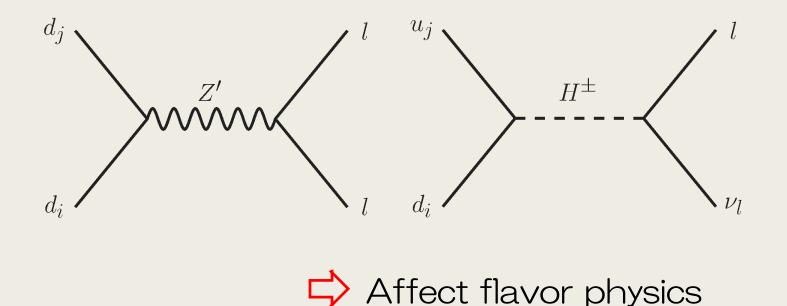
New particles

- new gauge boson, $Z' (\leftarrow U(1)'$ gauge sym.)
- physical modes in Higgs doublet

$$H^1 = \begin{pmatrix} H_1^+ \\ H_1^0 \end{pmatrix}, \ H^2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix}, \ \cdots$$

 \rightarrow many physical modes (e.g. charged Higgs, ...)

- These particles cause FCNC processes
 U(1)' charges are flavor dependent
 - tree level processes



We focus on B physics

- b \rightarrow sll (R(K)) _{R. Aaij et al.} [LHCb Collab.], PRL **113**, 151601 (2014).
- ΔM_{Bs}
- $B \rightarrow X_s \gamma$
- R(D), R(D*)

Experiment	R(D)	$R(D^*)$
Belle	$0.375 \pm 0.064 \pm 0.026$ [15]	$0.302 \pm 0.03 \pm 0.011$ [16]
BABAR	$0.440 \pm 0.058 \pm 0.042$ [13, 14]	$0.332 \pm 0.024 \pm 0.018$ [13, 14]
LHCb		$0.336 \pm 0.027 \pm 0.030$ [99]
HFAG	$0.397 \pm 0.040 \pm 0.028$ [93]	$0.316 \pm 0.016 \pm 0.010$ [93]
SM prediction	0.300 ± 0.008 [100–103]	$0.252 \pm 0.003 \ [104]$

[13,14] J.P. Lees *et al.* [BaBar Collab.], PRL **109**, 101802 (2012); PRD **88**, 072012 (2013). [15] M. Huschle *et al.* [Belle Collab.], PRD **92**, 072014 (2015).

[16] A. Abdesselam *et al.* [Belle Collab.], arXiv:1603.06711 [hep-ex].

[93] Y. Amhis et al. [Heavy Flavor Averaging Group (HFAG)], arXiv:1412.7515 [hep-ex].

[99] R. Aaij *et al.* [LHCb Collab.], PRL **115**, 111803 (2015).

[100] J.F. Kamenik and F. Mescia, PRD **78** 014003 (2008).

[101] M. Tanaka and R. Watanabe, PRD 82, 034027 (2010).

[102] J.A. Bailey et al. [MILC Collab.], PRD 92 034506 (2015).

[103] H. Na et al. [HPQCD Collab.], PRD 92, 054510 (2015).

[104] S. Fajfer, J.F. Kamenik, and I. Nisandzic, PRD 85, 094025 (2012).

Can explain these obs.? Are there any predictions?

Model

Charge assignment

P. Ko, Y. Omura, YS, C. Yu, PRD **95**, 115040 (2017)

0 40					6	New gauge sym
Fields	spin	$\mathrm{SU}(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	U(1)'	
\hat{Q}_L^a	1/2	3	2	1/6	0	
\hat{Q}_L^3	1/2	3	2	1/6	1	
\hat{u}_R^a	1/2	3	1	2/3	q_a	
\hat{u}_R^3	1/2	3	1	2/3	$1 + q_3$	
\hat{d}_R^i	1/2	3	1	-1/3	$-q_{1}$	
\hat{L}^1	1/2	1	2	-1/2	0	
\hat{L}^A	1/2	1	2	-1/2	q_e	
\hat{e}_R^1	1/2	1	1	-1	$-q_{1}$	
\hat{e}_R^A	1/2	1	1	-1	$q_e - q_2$	
H^i	0	1	2	1/2	q_i	3 Higgs doublets
$\blacktriangleright \Phi$	0	1	1	0	q_{Φ}	

New SM singlet scalar

a = 1, 2; A = 2, 3; i = 1, 2, 3

✓ In this work, $(q_1, q_2, q_3, q_{\Phi}) = (0, 1, 3, -1)$

Scalar potential

 $V_{H} = m_{H_{i}}^{2} |H_{i}|^{2} + m_{\Phi}^{2} |\Phi|^{2} + \lambda_{H}^{ij} |H_{i}|^{2} |H_{j}|^{2} + \lambda_{H\Phi}^{i} |H_{i}|^{2} |\Phi|^{2} + \lambda_{\Phi} |\Phi|^{4}$ $- A_{1} H_{1}^{\dagger} H_{2} (\Phi)^{\frac{q_{1}-q_{2}}{q_{\Phi}}} - A_{2} H_{2}^{\dagger} H_{3} (\Phi)^{\frac{q_{2}-q_{3}}{q_{\Phi}}} - A_{3} H_{1}^{\dagger} H_{3} (\Phi)^{\frac{q_{1}-q_{3}}{q_{\Phi}}} + \text{H.c.}$ $(q_{1}, q_{2}, q_{3}, q_{\Phi}) = (0, 1, 3, -1)$

Integrate H_1 out : $H_1 \rightarrow \frac{A_1}{m_{H_1}^2} \Phi H_2$ Higgs VEVs $\langle H_2^0 \rangle = \frac{v}{\sqrt{2}} \cos \beta, \ \langle H_3^0 \rangle = \frac{v}{\sqrt{2}} \sin \beta, \ \langle \Phi \rangle = \frac{v_{\Phi}}{\sqrt{2}}$

→ For fermion mass hierarchy, large tan β & small $\epsilon \equiv \frac{A_1}{m_{H_1}^2} \langle \Phi \rangle$

Yukawa terms

$$\begin{split} V_{\rm Y} &= y_{1a}^{u} \overline{\hat{Q}_{L}^{1}} \widetilde{H^{a}} \hat{u}_{R}^{a} + y_{2a}^{u} \overline{\hat{Q}_{L}^{2}} \widetilde{H^{a}} \hat{u}_{R}^{a} + y_{33}^{u} \overline{\hat{Q}_{L}^{3}} \widetilde{H^{3}} \hat{u}_{R}^{3} + y_{32}^{u} \overline{\hat{Q}_{L}^{3}} \widetilde{H^{1}} \hat{u}_{R}^{2} \\ &+ y_{ai}^{d} \overline{\hat{Q}_{L}^{a}} H^{1} \hat{d}_{R}^{i} + y_{3i}^{d} \overline{\hat{Q}_{L}^{3}} H^{2} \hat{d}_{R}^{i} \\ &+ y_{11}^{e} \overline{\hat{L}^{1}} H^{1} \hat{e}_{R}^{1} + y_{AB}^{e} \overline{\hat{L}^{A}} H^{2} \hat{e}_{R}^{B} + \text{H.c.} \\ &= 1, 2; A = 2, 3; i = 1, 2, 3 \end{split}$$

Fermion mass matrices

$$\begin{pmatrix} Y_{ij}^{u} \end{pmatrix} = \begin{pmatrix} y_{11}^{u} \epsilon \ y_{12}^{u} \ 0 \\ y_{21}^{u} \epsilon \ y_{22}^{u} \ 0 \\ 0 \ y_{32}^{u} \epsilon \ y_{33}^{u} \end{pmatrix} \begin{pmatrix} \cos \beta \\ \cos \beta \\ \sin \beta \end{pmatrix}, \qquad \epsilon \equiv \frac{A_{1}}{m_{H_{1}}^{2}} \langle \Phi \rangle$$

$$\begin{pmatrix} (Y_{ij}^{d}) = \cos \beta \begin{pmatrix} \epsilon \\ \epsilon \\ 1 \end{pmatrix} \begin{pmatrix} y_{11}^{d} \ y_{12}^{d} \ y_{13}^{d} \\ y_{21}^{d} \ y_{22}^{d} \ y_{23}^{d} \\ y_{31}^{d} \ y_{32}^{d} \ y_{33}^{d} \end{pmatrix}, \quad \begin{pmatrix} Y_{ij}^{e} \end{pmatrix} = \cos \beta \begin{pmatrix} \epsilon \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} y_{11}^{e} \ 0 \ 0 \\ 0 \ y_{22}^{e} \ y_{23}^{e} \\ 0 \ y_{32}^{e} \ y_{33}^{e} \end{pmatrix}$$

Y. Shigekami

Fermion mass matrices

$$\begin{pmatrix} Y_{ij}^{u} \end{pmatrix} = \begin{pmatrix} y_{11}^{u} \epsilon \ y_{12}^{u} \ 0 \\ y_{21}^{u} \epsilon \ y_{22}^{u} \ 0 \\ 0 \ y_{32}^{u} \epsilon \ y_{33}^{u} \end{pmatrix} \begin{pmatrix} \cos \beta \\ \cos \beta \\ \sin \beta \end{pmatrix},$$

$$\begin{pmatrix} Y_{ij}^{d} \end{pmatrix} = \cos \beta \begin{pmatrix} \epsilon \\ \epsilon \\ 1 \end{pmatrix} \begin{pmatrix} y_{11}^{d} \ y_{12}^{d} \ y_{13}^{d} \\ y_{21}^{d} \ y_{22}^{d} \ y_{23}^{d} \\ y_{31}^{d} \ y_{32}^{d} \ y_{33}^{d} \end{pmatrix}, \quad \begin{pmatrix} Y_{ij}^{e} \end{pmatrix} = \cos \beta \begin{pmatrix} \epsilon \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} y_{11}^{e} \ 0 \ 0 \\ 0 \ y_{22}^{e} \ y_{23}^{e} \\ 0 \ y_{32}^{e} \ y_{33}^{e} \end{pmatrix}$$

$$\searrow \quad \frac{v}{\sqrt{2}} Y^{I} = (U_{L}^{I})^{\dagger} \text{diag}(m_{1}^{I}, m_{2}^{I}, m_{3}^{I}) U_{R}^{I} \quad (I = u, d, e)$$

each elements: $|(U_L^d)_{33}| \simeq 1, |(U_L^d)_{23}| = \mathcal{O}(\epsilon), |(U_L^d)_{13}| = \mathcal{O}(\epsilon)$ &

→ Important for flavor physics

 $|(U_R^u)_{33}| \simeq 1, \ |(U_R^u)_{23}| = \mathcal{O}(\epsilon), \ |(U_R^u)_{23}| \gg |(U_R^u)_{13}|.$

Yukawa couplings with charged Higgs $-\mathcal{L}_{Y_{+}} = (Y_{+}^{u})_{ij}H^{-}\overline{d_{L}^{i}}u_{B}^{j} + (Y_{+}^{d})_{ij}H^{+}\overline{u_{L}^{i}}d_{B}^{j} + (Y_{+}^{e})_{ij}H^{+}\overline{\nu_{L}^{i}}e_{B}^{j} + \text{H.c.}$ $\begin{cases} (Y^u_{\pm})_{ij} = -\frac{m_u^k \sqrt{2}}{v} (V_{\text{CKM}})^*_{ki} G_{kj} \\ (Y^d_{\pm})_{ij} = -(V_{\text{CKM}})_{ij} \frac{m_d^j \sqrt{2}}{v} \tan \beta \end{cases}$ $G_{ij} = \left(U_R^u \begin{pmatrix} -\tan\beta & & \\ & -\tan\beta & \\ & & \frac{1}{\tan\beta} \end{pmatrix} U_R^u^\dagger \right)_{ij} \qquad d_j$ $(Y^u_{\pm})_{ij}$ $= -\tan\beta\,\delta_{ij} + \left(\tan\beta + \frac{1}{\tan\beta}\right)(G_R^u)_{ij}$ Flavor-violating $(G_R^u)_{ij} \equiv (U_R^u)_{i3} (U_R^u)_{j3}^*$

Z' couplings

$$\mathcal{L}_{Z'} = g' \hat{Z}'_{\mu} \left\{ \underbrace{(g_L^u)_{ij}}_{L} \overline{\gamma}^{\mu} u_L^j + \underbrace{(g_L^d)_{ij}}_{L} \overline{\gamma}^{\mu} d_L^j + \underbrace{(g_R^u)_{ij}}_{L} \overline{\gamma}^{\mu} u_R^j - q_1 \overline{d_R^i} \gamma^{\mu} d_R^i \right\} \\ + g' \hat{Z}'_{\mu} \left\{ q_e \left(\overline{\mu_L} \gamma^{\mu} \mu_L + \overline{\tau_L} \gamma^{\mu} \tau_L \right) + \underbrace{(g_L^\nu)_{ij}}_{L} \overline{\gamma}^{\mu} \nu_L^j - q_1 \overline{e_R^1} \gamma^{\mu} e_R^1 + (q_e - q_2) \overline{e_R^A} \gamma^{\mu} e_R^A \right\}$$

Flavor-violating couplings

Z' couplings

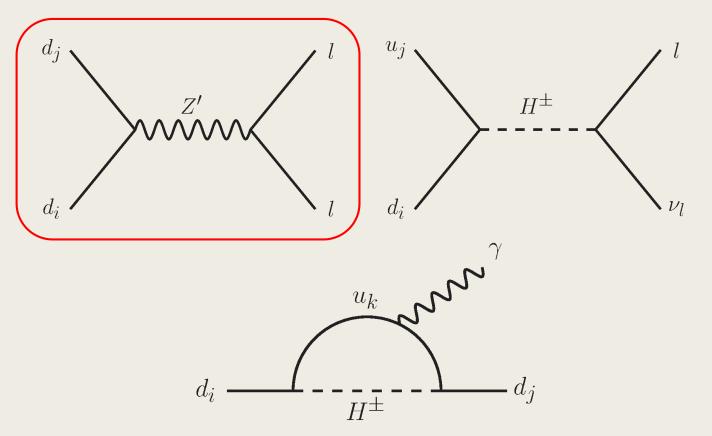
 $(g_L^d)_{ij} = (U_L^d)_{i3} (U_L^d)_{j3}^*,$ $(g_L^u)_{ij} = (U_L^u)_{i3} (U_L^u)_{j3}^* = (V_{\text{CKM}})_{ik} (g_L^d)_{kk'} (V_{\text{CKM}})_{jk'}^*, \qquad f_i$ $(g_R^u)_{ij} = (U_R^u)_{ik} q_k (U_R^u)_{jk}^*,$ $(g_L^\nu)_{ij} = q_e^k \left\{ (U_L^\nu)_{ik} (U_L^\nu)_{jk}^* \right\} = q_e \left\{ \delta_{ij} - (V_{\text{PMNS}}^\dagger)_{i3} (V_{\text{PMNS}}^\dagger)_{j3}^* \right\}.$

 $\frac{v}{\sqrt{2}}Y^{I} = (U_{L}^{I})^{\dagger} \text{diag}(m_{1}^{I}, m_{2}^{I}, m_{3}^{I})U_{R}^{I} \ (I = u, d, e)$

The size of each g_{ij} $|(U_L^d)_{33}| \simeq 1, |(U_L^d)_{23}| = \mathcal{O}(\epsilon), |(U_L^d)_{13}| = \mathcal{O}(\epsilon)$ $|(U_R^u)_{33}| \simeq 1, |(U_R^u)_{23}| = \mathcal{O}(\epsilon), |(U_R^u)_{23}| \gg |(U_R^u)_{13}|.$ $(g_L^d)_{sb} = \mathcal{O}(\epsilon), (g_L^d)_{db} = \mathcal{O}(\epsilon), (g_L^d)_{sd} = \mathcal{O}(\epsilon^2),$ $(g_L^u)_{ij} \simeq (g_L^d)_{ij}, (g_R^u)_{ct} = q_3 \times \mathcal{O}(\epsilon), |(g_R^u)_{ct}| \gg |(g_R^u)_{ut}|, |(g_R^u)_{uc}|.$

Flavor Physics

Flavor-violating processes



∎ b → sll

 $\Lambda \Box - O$

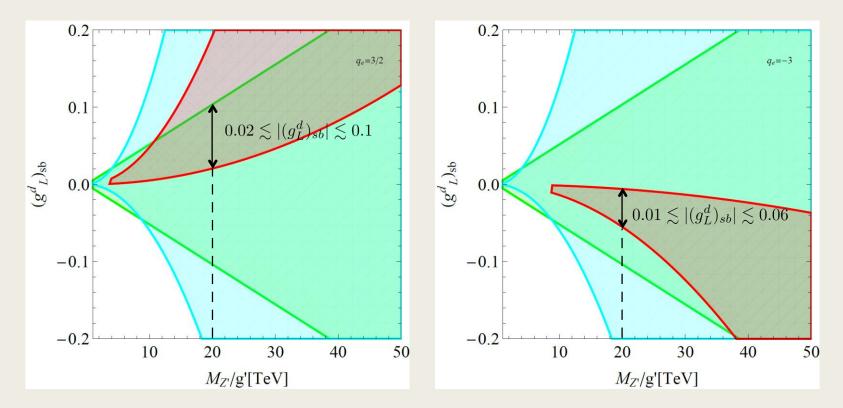
 $\begin{aligned} \mathcal{H}_{\text{eff}} &= -g_{\text{SM}} \left[C_{9}^{l} (\overline{s_{L}} \gamma_{\mu} b_{L}) (\overline{l} \gamma^{\mu} l) + C_{10}^{l} (\overline{s_{L}} \gamma_{\mu} b_{L}) (\overline{l} \gamma^{\mu} \gamma_{5} l) + \text{H.c.} \right] \\ C_{9}^{e} &= C_{10}^{e} = \frac{g'^{2}}{2g_{\text{SM}} M_{Z'}^{2}} (g_{L}^{d})_{sb} q_{1} \\ C_{9}^{\mu} &= C_{9}^{\tau} = -\frac{g'^{2}}{2g_{\text{SM}} M_{Z'}^{2}} (g_{L}^{d})_{sb} (2q_{e} - q_{2}) \\ C_{10}^{\mu} &= C_{10}^{\tau} = \frac{g'^{2}}{2g_{\text{SM}} M_{Z'}^{2}} (g_{L}^{d})_{sb} q_{2} \\ -0.29 (-0.34) \leq C_{9}^{\mu} / C_{9}^{\text{SM}} \leq -0.013 (0.053) \\ -0.19 (-0.29) \leq C_{10}^{\mu} / C_{10}^{\text{SM}} \leq 0.088 (0.15) \end{aligned}$

T. Hurth, F. Mahmoudi, and S. Neshatpour, NPB 909, 737 (2016)

$$\mathcal{L}_{\text{eff}}^{\Delta F=2} = C_1^{ij} (\overline{d_L^i} \gamma_\mu d_L^j) (\overline{d_L^i} \gamma_\mu d_L^j), \quad C_1^{ij} = \frac{g'^2}{2M_{Z'}^2} (g_L^d)_{ij} (g_L^d)_{ij}$$

$$(g_L^d)_{sb} = \mathcal{O}(\epsilon)$$

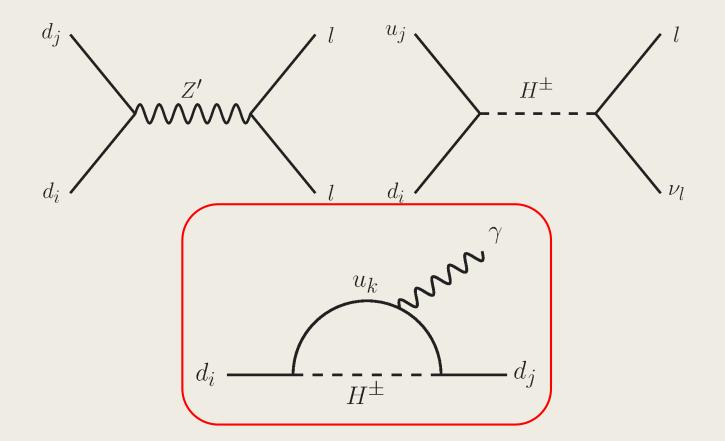
- b → sll & $\Delta F=2$ processes s.4
 - S. Aoki *et al.*, EPJC **77**, 112 (2017). Y. Amhis *et al.* [HFAG], arXiv:1412.7515 [hep-ex].



Allowed region for red: C_9^{μ} , cyan: C_{10}^{μ} , green: B_s - B_s bar mixing

T. Hurth, F. Mahmoudi, and S. Neshatpour, NPB 909, 737 (2016)

Flavor-violating processes



$$\begin{array}{l} \mathbb{B} \stackrel{\searrow}{\rightarrow} \mathbb{X}_{s} \stackrel{\gamma}{\gamma} \quad \mathcal{H}_{eff}^{b \rightarrow s \gamma} = -\frac{4G_{F}}{\sqrt{2}} V_{ts}^{*} V_{tb} \left(C_{7} \mathcal{O}_{7} + C_{8} \mathcal{O}_{8} \right) \\ \mathcal{O}_{7} = \frac{e}{16\pi^{2}} m_{b} (\overline{s_{L}} \sigma^{\mu\nu} b_{R}) F_{\mu\nu}, \mathcal{O}_{8} = \frac{g_{s}}{16\pi^{2}} m_{b} (\overline{s_{L}} t^{a} \sigma^{\mu\nu} b_{R}) G_{\mu\nu}^{a} \\ C_{7} = \left(\frac{m_{j}^{u} m_{k}^{u}}{m_{t}^{2}} \right) \frac{V_{kb} V_{js}^{*}}{V_{tb} V_{ts}^{*}} G_{ki}^{*} G_{ji} C_{7}^{(1)} (x_{i}) + \left(\frac{m_{k}^{u}}{m_{t}} \right) \frac{V_{ib} V_{ks}^{*}}{V_{tb} V_{ts}^{*}} G_{ki} \tan \beta C_{7}^{(2)} (x_{i}) \\ C_{8} = \left(\frac{m_{j}^{u} m_{k}^{u}}{m_{t}^{2}} \right) \frac{V_{kb} V_{js}^{*}}{V_{tb} V_{ts}^{*}} G_{ki}^{*} G_{ji} C_{8}^{(1)} (x_{i}) + \left(\frac{m_{k}^{u}}{m_{t}} \right) \frac{V_{ib} V_{ks}^{*}}{V_{tb} V_{ts}^{*}} G_{ki} \tan \beta C_{8}^{(2)} (x_{i}) \\ C_{7}^{(1)} (x) = \frac{x}{72} \left\{ \frac{-8x^{3} + 3x^{2} + 12x - 7 + (18x^{2} - 12x) \ln x}{(x - 1)^{4}} \right\}, \\ \text{Loop integrals:} \quad C_{7}^{(2)} (x) = \frac{x}{12} \left\{ \frac{-5x^{2} + 8x - 3 + (6x - 4) \ln x}{(x - 1)^{3}} \right\}, \\ C_{8}^{(1)} (x) = \frac{x}{24} \left\{ \frac{-x^{3} + 6x^{2} - 3x - 2 - 6x \ln x}{(x - 1)^{4}} \right\}, \end{array}$$

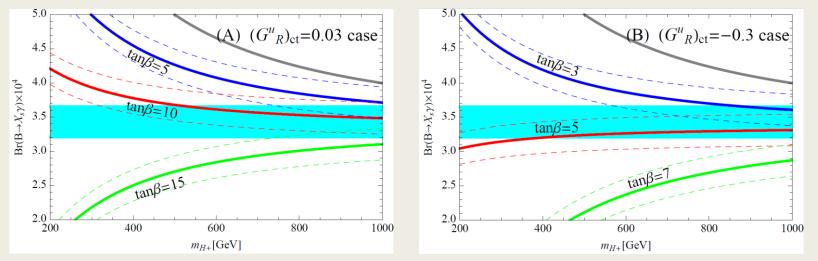
LOOP Integrais.

LHCb anomaly and B physics in flavored Z' models with flavored Higgs doublets

 $C_8^{(2)}(x) = \frac{x}{4} \left\{ \frac{-x^2 + 4x - 3 - 2\ln x}{(x-1)^3} \right\}.$

 $\blacksquare \ \mathsf{B} \xrightarrow{} \mathsf{X}_{\mathsf{s}} \gamma$

- (A) $((G_R^u)_{tt}, (G_R^u)_{tc}, (G_R^u)_{cc}, (G_R^u)_{uu}) = (1 (G_R^u)_{cc}, 0.03, 10^{-3}, 0)$
- (B) $((G_R^u)_{tt}, (G_R^u)_{tc}, (G_R^u)_{cc}, (G_R^u)_{uu}) = (1 (G_R^u)_{cc}, -0.3, 0.1, 0)$

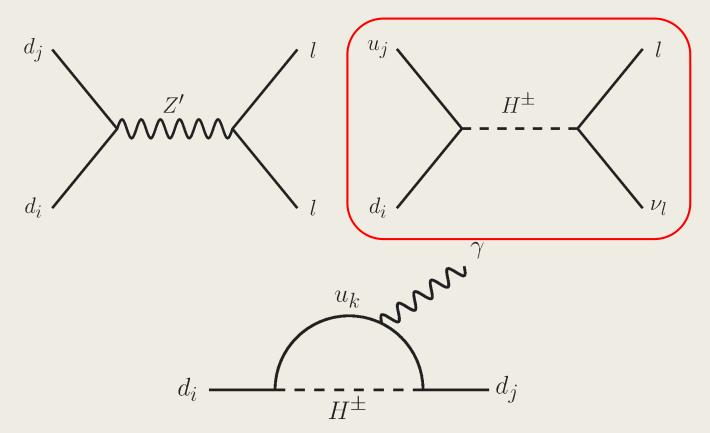


cyan band: experimental results (HFAG, arXiv:1412.7515) gray line: $\tan \beta = 50$, $(G^u_R)_{ct} = -10^{-3}$ (\rightarrow for $R(D^{(*)})$)

difference : couplings of charged Higgs

$$(Y^u_{\pm})_{st} \simeq -\frac{m_t \sqrt{2}}{v} V^*_{ts} G_{tt} - \frac{m_c \sqrt{2}}{v} V^*_{cs} G_{ct}$$

Flavor-violating processes



Flavor Physics Involving b R(D) & R(D*) $R(D^{(*)}) = \frac{Br(B \to D^{(*)}\tau\nu)}{Br(B \to D^{(*)}l\nu)}$

 $\mathcal{H}_{\text{eff}}^{B-\tau} = C_{\text{SM}}^{cb} (\overline{c_L} \gamma_\mu b_L) (\overline{\tau_L} \gamma^\mu \nu_L) + C_R^{cb} (\overline{c_L} b_R) (\overline{\tau_R} \nu_L) + C_L^{cb} (\overline{c_R} b_L) (\overline{\tau_R} \nu_L)$

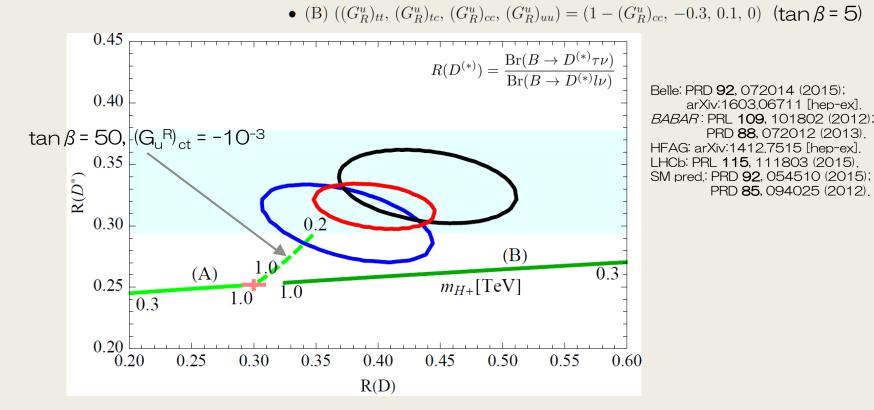
$$R(D) = R_{\rm SM} \left(1 + 1.5 \,\,\mathrm{Re} \left(\frac{C_R^{cb} + C_L^{cb}}{C_{\rm SM}^{cb}} \right) + \left| \frac{C_R^{cb} + C_L^{cb}}{C_{\rm SM}^{cb}} \right|^2 \right),$$
$$R(D^*) = R_{\rm SM}^* \left(1 + 0.12 \,\,\mathrm{Re} \left(\frac{C_R^{cb} - C_L^{cb}}{C_{\rm SM}^{cb}} \right) + 0.05 \left| \frac{C_R^{cb} - C_L^{cb}}{C_{\rm SM}^{cb}} \right|^2 \right),$$

$$C_{\rm SM}^{cb} = 2V_{cb}/v^2,$$

$$\frac{C_L^{cb}}{C_{\rm SM}^{cb}} = \frac{m_c m_{\tau}}{m_{H_{\pm}}^2} \tan^2 \beta - \sum_k \frac{V_{kb}}{V_{cb}} \frac{m_k^u m_{\tau} (G_R^u)_{kc}^*}{m_{H_{\pm}}^2 \cos^2 \beta},$$

$$\frac{C_R^{cb}}{C_{\rm SM}^{cb}} = -\frac{m_b m_{\tau}}{m_{H_{\pm}}^2} \tan^2 \beta.$$

 $\blacksquare R(D) \& R(D^*) \bullet (A) ((G_R^u)_{tt}, (G_R^u)_{tc}, (G_R^u)_{cc}, (G_R^u)_{uu}) = (1 - (G_R^u)_{cc}, 0.03, 10^{-3}, 0) (\tan \beta = 10)$



Ellipse \rightarrow 1 σ results for the Bell (blue), *BABAR* (black), HFAG (red) cyan band: LHCb 1 σ result

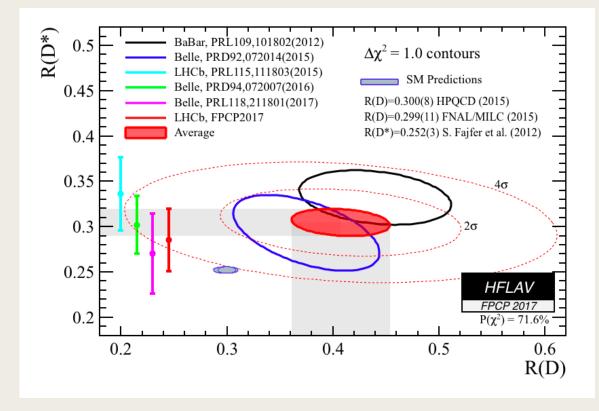
Summary

Summary

- We consider U(1)' extended model new Higgs doublets → can explain fermion masses
- focus on B physics by Z' and charged Higgs b → sll & $\Delta F=2$: can explain simultaneously B → X_s γ : m_{H±}>500 GeV, tan $\beta \sim$ 5-10 R(D) & R(D*) : hard to explain
- In this model, (t,c)-element becomes large if the sensitivity of LHC is improved, $(G_R^u)_{tc} \sim \mathcal{O}(0.01)$ this model can be tested via t \rightarrow ch channel $\frac{m_t}{v} \tan \beta (G_R^u)_{tc} \{ \sin(\alpha - \beta)h + \cos(\alpha - \beta)H - iA \} \overline{t_L}c_R + \text{H.c.} \}$

Buck up

B anomalies



From talk slide of FPCP2017

Yukawa couplings

Yukawa couplings (S = h, H, A)

 $-\mathcal{L}_Y = (Y_S^u)_{ij} S \overline{u_L^i} u_R^j + (Y_S^d)_{ij} h \overline{d_L^i} d_R^j + (Y_S^e)_{ij} H \overline{e_L^i} e_R^j$ $+ (Y_{\pm}^u)_{ij} H^- \overline{d_L^i} u_R^j + (Y_{\pm}^d)_{ij} H^+ \overline{u_L^i} d_R^j + (Y_{\pm}^e)_{ij} H^+ \overline{\nu_L^i} e_R^j + \text{H.c.}$

$\begin{array}{ll} \mathsf{Up-type} & \mathsf{Down-type} \\ (Y_h^u)_{ij} &= \frac{m_u^i \sin(\alpha - \beta)}{v} G_{ij} + \frac{m_u^i \cos(\alpha - \beta)}{v} \delta_{ij}, & (Y_h^d)_{ij} &= -\delta_{ij} \frac{m_d^i}{v} \frac{\cos \alpha}{\cos \beta}, \\ (Y_H^u)_{ij} &= \frac{m_u^i \cos(\alpha - \beta)}{v} G_{ij} - \frac{m_u^i \sin(\alpha - \beta)}{v} \delta_{ij}, & (Y_H^d)_{ij} &= \delta_{ij} \frac{m_d^i}{v} \frac{\sin \alpha}{\cos \beta}, \\ (Y_A^u)_{ij} &= -i \frac{m_u^i}{v} G_{ij}, & (Y_A^d)_{ij} &= -i \delta_{ij} \frac{m_d^i}{v} \tan \beta, \\ (Y_{\pm}^u)_{ij} &= -\frac{m_u^k \sqrt{2}}{v} V_{ki}^* G_{kj}, & (Y_{\pm}^d)_{ij} &= -V_{ij} \frac{m_d^j \sqrt{2}}{v} \tan \beta. \end{array}$

■ input parameters from PDG [73]

$\alpha_s(M_Z)$	0.1193(16) [73]	λ	0.22537(61) [73]
G_F	$1.1663787(6) \times 10^{-5} \text{ GeV}^{-2} [73]$	A	$\begin{array}{c} 0.22537(61) \ [73] \\ 0.814^{+0.023}_{-0.024} \ [73] \end{array}$
m_b	$4.18 \pm 0.03 {\rm GeV} [73]$	$\overline{\rho}$	0.117(21) [73]
m_t	$160^{+5}_{-4} \text{ GeV} [73]$	$\overline{\eta}$	0.353(13) [73]
m_c	$1.275 \pm 0.025 {\rm GeV} [73]$		

Extra matters

Fields	Spin	$\mathrm{SU}(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	U(1)'
Q'_R	1/2	3	2	1/6	1
Q'_L	1/2	3	2	1/6	0
u'_L	1/2	3	1	2/3	1
u'_R	1/2	3	1	2/3	0
u_L''	1/2	3	1	2/3	$1 + q_{3}$
u_R''	1/2	3	1	2/3	0
R'_{μ}	1/2	1	2	-1/2	q_e
L'_{μ}	1/2	1	2	-1/2	0
R'_{τ}	1/2	1	2	-1/2	q_e
L'_{τ}	1/2	1	2	-1/2	0
μ'_L	1/2	1	1	-1	$q_e - 1$
μ_R'	1/2	1	1	-1	0
$ au_L'$	1/2	1	1	-1	$q_e - 1$
$ au_R'$	1/2	1	1	-1	0
Φ_l	0	1	1	0	q_e
Φ_r	0	1	1	0	$q_e - 1$

Table 4: The extra chiral fermions for the anomaly-free conditions with $(q_1, q_2) = (0, 1)$. The bold entries "**3**" ("**2**") show the fundamental representation of SU(3) (SU(2)) and "**1**" shows singlet under SU(3) or SU(2).