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Moving iIn a DM Halo
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Direct Detection
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Direct Detection

(with scintillator)
Usually, we assume the scattered atom is not excited or ionized

Hea
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Energy loss due to (in-)elastic scattering with other atoms

*'I 0-20%

Electronic excitations

¥

Scintillation
Only a small amount of recoil energy is used for scintillation



Direct Detection

(with scintillator)

If the atom is ionized.,:--

=> X-ray from recombination

=> sensitive to smaller recoll energy
(lighter DM)

T
?80-90%

Energy loss due to (in-)elastic scattering with other atoms

*10-20%
lon == electron %
Electronic excitations
* .100%

‘ Atom + X-ray '

Scintillation

[J. D. Vergados, H. Ejiri, 'O5; R. Bernabei et al, '07/]



Formulation



T-matrix
Trr ~ —2m6(Ep — Er){(F|Hpm_n|I)

‘F or ]> — ‘DM> R |at()m> . energy eigenstate
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atomic states

Trr ~ —2m6(Ep — Er){(F|Hpm_n|I)

‘F or ]> — ‘DM> R |at()m> . energy eigenstate
'DM) : Plane wave of DM

|at0m> . “Plane wave” of an atom
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electron wave function at rest

gives an approximate energy eigenstate of the total Hamiltonian



Atomic cross section

Trr ~ —2m6(Ep — Er){(F|Hpm_n|I)
/

We assume a contact interaction

¥

do 1 ma 2\12 = 2
— =) 5 Fa(qa)|"on|Zri(ge)]”
d/ER ; 2 1RV
recoil energy ZF1(ge) = <\I’F’€_iqe&m’l>
Qe — Z_ZQA

1 [Mupue(g — 0)]?

~ : DM-Nucleus X-sec.
167 (mN —+ mDM)2

ON

Fa(q%) - Nucleus form factor

M NI DM

HN = m~x +mpyy - Reduced mass




Atomic cross section

Trr ~ —2m6(Ep — Er){(F|Hpm_n|I)
/

We assume a contact interaction

. : DM-Nucleus X-sec.

: Nucleus form factor

- Reduced mass



Migdal effect

Zri(ge) = (Wple X )

electron wave functions

[A. B. Migdal; 1939]
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lectron wave functions

(Dirac-Hartree-Fock)
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Initial/Final states
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Ground state = |W) (single electron) (single electron)
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(Including an exchange of electrons)



Migdal factor

Zpi(qe)]? = [(Uple™ "X W) 2 ~ [(Up|qe - X|W))]?
(F +1)

Xe (ge = me x 1073)

lonization

(n, O)|| Py Psd P65 Posep || Ene V] |5 [dE. 9L
1s - - - 7.3 x 10719(|3.5 x 10*|| 4.6 x 1076
2s = —~ = 1.8 x 1078 ||5.4 x 10%|| 2.9 x 1077
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Spectrum of 1onized electron
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Result 2
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Summary

When we discuss the direct detection of DM, we usually assume
that the recoil atom is not excited or ionized.

If we consider excitation and ionization, we expect more efficient
scintillation due to emitted electrons and photons from the recoill
atom.

We re-formulated the scattering of DM and an atom with the
utmost care to the transition rates of electrons, which is not
correctly discussed in the previous works.

Including the excitation/ionization effects, we can search for dark
matter with a few or sub- GeV mass even with existing detectors.
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[Big bang theory]



