
Higgs inflation puts  
lower and upper bounds  

on tensor-to-scalar ratio and  
on Higgs-portal-DM mass

Kin-ya Oda (Osaka)
with 

Yuta Hamada (Wisconsin) 

Hikaru Kawai (Kyoto) 
Yukari Nakanishi (Osaka) 

1709.09350



For those who have 
already listened to

✦ Thereʼs	something	new:	

★ Bounds	got	tighter	than	previous	talks



So,



We have witnessed  
great victory of 

SM at LHC

Picture from web



Coupling ∝ mass
✦ Higgs	ever	more	SM-
like:	

★ All	particles	
massless	in	SM	

★ Gets	mass	from	
coupling	to	Higgs	
VEV	

✦ Not	only	with	gauge	
bosons,	but	also	with	
quarks	and	leptons.Particle mass [GeV]
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On the other hand,



CMS Exotica Physics Group Summary – ICHEP, 2016!
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TeV SUSY/
Extra dim’s 
are dead too



Where we are
✦ SM	may	well	valid	up	to	very	large	
scales.	

✦ Where	is	new	physics?	

★ We	know	for	sure	that	there	must	be	
DM	and	neutrino	masses.	

✦ Can	we	say	something	on	them?



Plan

1. SM	criticality	

2. Higgs	inflation	

3. Constraints	on	DM	and	neutrino



SM criticality
✦ Triple	criticality	at	Planck	scale	1018	GeV:	

★ Higgs	coupling・scale	dependence・bare	mass	〜0

Phys.Rev. D87 (2013) 053009Figure 1: Left: MS running couplings. The 95% confidence intervals are given for m2

B/I1,
yt(µ), �(µ), and 10��(µ); see text for more details. The intervals for the gauge couplings
gY , g2, and g

3

are too small to be seen. Right: Enlarged view around the horizontal axis
of Left. Darker bands are the 95% confidence intervals under the (theoretically unjustified)
assumption that the Tevatron mass (14) can be identified with the top pole mass Mt.

1.96� variation of Mt (15), where ↵s(Mz) and MH are fixed to their central values.
Similarly, we plot the bare Higgs mass-squared m2

B, divided by the quadratically
divergent integral I

1

= ⇤2/16⇡2, as a function of ⇤ [4, 53]. Note that the bare
mass m2

B is not the running mass.
We see that the Higgs quartic coupling � has a minimum around 1017GeV.

This is due to the fact that the beta function of � receives less negative contribution
from the top loop since yt becomes smaller at high scales.

We can fit the parameters at the reduced Planck scale7 MP := 1/
p
8⇡G =

2.4⇥ 1018GeV as

�(MP ) = �0.015� 0.019
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where the dependence of �� on ↵s(MZ) is of O(10�7) and is not shown.
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✦ Flat	and	low（compared	to	φ4〜1072GeV4)

n ≥ 3, and omit them hereafter. By tuning the top mass for
a given Higgs mass, we can obtain arbitrarily small λmin.
This fact is crucial for our inflation scenario.
We note that for the potential to be monotonically

increasing [48], λmin must be larger than a critical value λc:

λmin ≥ λc ≔
β2

ð64π2Þ2
: ð15Þ

When λmin saturates this inequality,

λmin ¼ λc; ð16Þ

there appears a true saddle point of the potential
Vφ ¼ Vφφ ¼ 0. We see in Sec. VA that in prescription
I, this value λc also gives the true saddle point of the
modified potential: Uφ ¼ Uφφ ¼ 0.5

In the left, center, and right of Fig. 3, we plotMt, β2, and
μmin, respectively, with the critical value of λmin given in

Eq. (16). The band corresponds to the 95% C.L. for the
strong coupling constant measured at μ ¼ MZ, where

αsðMZÞ ¼ 0.1185$ 0.0006 ð17Þ

at the 1σ level [1]. We see that β2 does not depend much on
MH. In the following figures except Fig. 12, we take a
reference value β2 ¼ 0.5.6 μmin changes by an order of
magnitude when one includes the one-loop corrections to
the effective potential as shown in the right of Fig. 3. The
two-loop corrections are negligible compared with the one-
loop corrections; see e.g. Ref. [6]. In Fig. 3, we see that β2
and μmin differ between tree and one-loop levels, but note
that Mt is almost identical at both levels.

III. INFLATION MODEL

Let us consider the effective action of the SM-gravity
system in the local potential approximation. As we are
interested in the spatially constant field configuration and
the case where the Hubble parameter is much smaller than
the Planck scale, we restrict ourselves to the terms
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FIG. 2 (color online). Left: The tree-level Higgs potential (3) as a function of Higgs field φ. Right: The one-loop Higgs potential
(3)–(4). We take MH ¼ 125.9 GeV and αs ¼ 0.1185.
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FIG. 3 (color online). Mt (left), β2 (center), and μmin (right) that realize the condition λmin ¼ λc are plotted as functions ofMH . We have
imposed the condition λmin ¼ λc using the tree-level potential (3) and the one-loop one, (3)–(4), for the red and blue bands, respectively.
(The one-loop blue band is the upper one for left and right, whereas it is the lower for center.) The width of the bands corresponds to the
95% C.L. of αsðMZÞ. Dotted lines show the current 95% C.L. for MH; see Eq. (1).

5The numerical difference between the results from the
condition λmin ¼ 0 and from Eq. (16) is much smaller than the
deviation coming from the αsðMZÞ error. We have imposed
λmin ¼ 0 within a precision of 10−5 in the actual numerical
computation in writing Fig. 3. Note that λc ¼ 2.5 × 10−6β2.

6We have checked that the changes of spectral index, its
running, its running of running, and tensor-to-scalar ratio are
hardly seeable when we vary β2.

HAMADA et al. PHYSICAL REVIEW D 91, 053008 (2015)

053008-4

Hamada, Kawai, KO, Park

Phys.Rev. D91 (2015) 053008

Higgs potential at  
Planck scale

Smaller	mt	
More	stable

Larger	mt		
More	unstable

	SM 
vacuum



What it means



We are put on the edge

4

X X0 �X↵s �XM �Xpar �X+
µ �X�

µ �Xtru �O(↵2)
i �

O(↵↵s,↵
4
s)

↵s �
O(↵4

s)
q

Mcri
t 171.44 0.23 0.20 0.001 �0.36 0.17 �0.02 171.55�0.47

+1.04 171.43�0.36
+0.17 171.24�0.38

+0.19

log10 µ
cri
t 17.752 �0.051 0.083 0.007 0.007 �0.006 �0.002 17.783+0.062

�0.008 17.754+0.007
�0.006 17.751+0.007

�0.007

Mcri
H 129.30 �0.49 1.79 0.002 0.72 �0.33 0.04 129.06+0.95

�2.14 129.32+0.73
�0.33 129.72+0.76

�0.38

log10 µ
cri
H 18.512 �0.158 0.381 0.008 0.173 �0.082 0.008 18.495+0.226

�0.531 18.518+0.174
�0.082 18.602+0.184

�0.094
fMcri

t 171.64 0.23 0.20 0.001 �0.36 0.17 �0.02 171.74�0.46
+1.04 171.63�0.36

+0.17 171.43�0.37
+0.19

log10 µ̃
cri
t 21.442 �0.059 0.094 0.005 �0.083 0.022 0.002 21.485�0.085

+0.343 21.445�0.083
+0.022 21.441�0.072

+0.014
fMcri

H 128.90 �0.49 1.79 0.003 0.73 �0.34 0.04 128.67+0.95
�2.15 128.92+0.73

�0.34 129.32+0.76
�0.38

log10 µ̃
cri
H 22.209 �0.181 0.436 0.007 0.092 �0.062 0.013 22.201+0.146

�0.171 22.217+0.094
�0.062 22.312+0.113

�0.082

TABLE II: Coe�cients in Eq. (7) and central values with scale dependencies obtained upon switching o↵ the O(↵2) terms in
�i(µ) with i = W,Z,H, q, the O(↵↵s) and O(↵4

s) terms in �↵s(µ), and the O(↵4
s) terms in �q(µ) one at a time. The unit of

mass is taken to be GeV.

FIG. 1: RG evolution of �(µ) from µthr to µcri and beyond
in the (�,��) plane for default input values and matching
scale (red solid line), e↵ects of 1� (brown solid lines) and 3�
(blue solid lines) variation in MMC

t , theoretical uncertainty
due to the variation of ⇠ from 1/2 to 2 (upper and lower
black dashed lines with asterisks in the insets), and results
for Mcri

t (green dashed line) and Mcri
H (purple dashed line).

The 1� (brown ellipses) and 3� (blue ellipses) contours due to
the errors in MMC

t and MH are indicated for selected values
of µ. The insets in the upper right and lower left corners refer
to µ = MMC

t and µ = 1.55 ⇥ 1010 GeV, respectively.

over to Mt, which is actually the real part of the complex
pole position upon mass renormalization in the on-shell
scheme [25]. In view of the resonance property, a shift of
order �t = 2.00 GeV [2] would be plausible, which should
serve as a useful error estimate for the time being.

In conclusion, we performed a high-precision analy-
sis of the vacuum stability in the SM incorporating full
two-loop threshold corrections [5, 12–14], three-loop beta
functions [6], and O(↵4

s) corrections to the matching and
running of gs [7, 17] and yq [8, 18], and adopting two
gauge-independent approaches, one based on the criti-
cality criterion (2) for �(µ) [5] and one on a reorgani-
zation of Ve↵(H) so that its minimum is gauge inde-
pendent order by order [20]. For the Mt upper bound
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FIG. 2: Phase diagram of vacuum stability (light-green
shaded area), metastability, and instability (pink shaded area)
in the (MH ,Mt) plane, contours of �(µ0) = 0 for selected val-
ues of µ0 (purple dotted lines), contours of ��(µ0) = 0 for se-
lected values of µ0 (solid parabolalike lines) with uncertainties

due to 1� error in ↵(5)
s (MZ) (dashed and dot-dashed lines),

critical line of Eq. (2) (solid green line) with uncertainty due

to 1� error in ↵(5)
s (MZ) (orange shaded band), and critical

points with Mcri
t (lower red bullet) and Mcri

H (right red bul-
let). The present world average of (MMC

t ,MH) (upper left
red bullet) and its 1� (purple ellipse), 2� (brown ellipse), and
3� (blue ellipse) contours are marked for reference.

we thus obtained M cri
t = (171.44 ± 0.30+0.17

�0.36 ) GeV and
fM cri

t = (171.64±0.30+0.17
�0.36 ) GeV, respectively, where the

first errors are experimental, due the 1� variations in the
input parameters [2], and the second ones are theoretical,
due to the scale and truncation uncertainties. In want of
more specific information, we assume the individual error
sources to be independent and combine them quadrati-
cally to be on the conservative side. The 0.20 GeV dif-
ference between the central values of M cri

t and fM cri
t in-

dicates the scheme dependence, which arguably comes
as a third independent source of theoretical uncertainty.

Bednyakov	et	al.	(2015)

6 8 10

0 50 100 150 200
0

50

100

150

200

Higgs pole mass Mh in GeV

To
p
po
le
m
as
sM

t
in
G
eV

LI=104GeV
5
6
7 8

910
12 14

16
19

Instability

N
on-perturbativity

Stability

Met
a-st

abil
ity

107 108
109

1010

1011

1012
1013

1014

1016

120 122 124 126 128 130 132
168

170

172

174

176

178

180

Higgs pole mass Mh in GeV

To
p
po
le
m
as
sM

t
in
G
eV

1017

1018

1019

1,2,3 s

Instability

Stability

Meta-stability
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to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.34GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-

19

Buttazzo	et	al.	(2013)
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There is something 
at Planck scale



Suggesting Higgs mass 
related to quantum gravity
✦ Multiple	point	criticality	principle	[Froggatt,	
Nielsen]	indeed	requires	this	situation	

★ PREdicted	Higgs	mass	in	1995:	135±9GeV 
（Cf.	observed:	125.09±0.24GeV）	

✦ Criticality	in	string	theory	

✦ Higgs	in	asymptotically	safe	gravity

Hamada, Kawai, KO
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Mass parameter of theory
✦ Higgs	mass	only	mass	parameter	in	SM	

✦ Planck	mass	only	mass	parameter	in	
Einstein	gravity	

✦ No	wonder	if	they	are	related	in	
quantum	gravity.



Plan

1. SM	criticality	

2. Higgs	inflation	

3. Constraints	on	DM	and	neutrino



✦ Hundreds	of	data	points	
beautifully	fit	by	just	  
6	parameters	

✦ Todayʼs	topic:	

★ Inflation	

★ DM	&	neutrinos

Planck Collaboration: Cosmological parameters
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Fig. 1. Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency-averaged
temperature spectrum computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters de-
termined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm, computed over 94 % of the sky. The best-fit base ⇤CDM theoreti-
cal spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown
in the lower panel. The error bars show ±1� uncertainties.

The large upward shift in Ase�2⌧ reflects the change in the abso-
lute calibration of the HFI. As noted in Sect. 2.3, the 2013 analy-
sis did not propagate an error on the Planck absolute calibration
through to cosmological parameters. Coincidentally, the changes
to the absolute calibration compensate for the downward change
in ⌧ and variations in the other cosmological parameters to keep
the parameter �8 largely unchanged from the 2013 value. This
will be important when we come to discuss possible tensions
between the amplitude of the matter fluctuations at low redshift
estimated from various astrophysical data sets and the Planck
CMB values for the base ⇤CDM cosmology (see Sect. 5.6).

(4) Likelihoods. Constructing a high-multipole likelihood for
Planck, particularly with T E and EE spectra, is complicated
and di�cult to check at the sub-� level against numerical
simulations because the simulations cannot model the fore-
grounds, noise properties, and low-level data processing of
the real Planck data to su�ciently high accuracy. Within the
Planck collaboration, we have tested the sensitivity of the re-
sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2016). The most highly developed of

them are the CamSpec and revised Plik pipelines. For the 2015
Planck papers, the Plik pipeline was chosen as the baseline.
Column 6 of Table 1 lists the cosmological parameters for base
⇤CDM determined from the Plik cross-half-mission likeli-
hood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations,
and multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasize that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on
the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
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Table 4. Parameter 68 % confidence limits for the base⇤CDM model from Planck CMB power spectra, in combination with lensing
reconstruction (“lensing”) and external data (“ext”, BAO+JLA+H0). While we see no evidence that systematic e↵ects in polarization
are biasing parameters in the base ⇤CDM model, a conservative choice would be to use the parameter values listed in Column 3
(i.e., for TT+lowP+lensing). Nuisance parameters are not listed here for brevity, but can be found in the extensive tables on the
Planck Legacy Archive, http://pla.esac.esa.int/pla; however, the last three parameters listed here give a summary measure
of the total foreground amplitude (in µK2) at ` = 2000 for the three high-` temperature power spectra used by the likelihood.
In all cases the helium mass fraction used is predicted by BBN from the baryon abundance (posterior mean YP ⇡ 0.2453, with
theoretical uncertainties in the BBN predictions dominating over the Planck error on ⌦bh2). The Hubble constant is given in units
of km s�1 Mpc�1, while r⇤ is in Mpc and wavenumbers are in Mpc�1.

TT+lowP TT+lowP+lensing TT+lowP+lensing+ext TT,TE,EE+lowP TT,TE,EE+lowP+lensing TT,TE,EE+lowP+lensing+ext
Parameter 68 % limits 68 % limits 68 % limits 68 % limits 68 % limits 68 % limits

⌦bh2 . . . . . . . . . . . 0.02222 ± 0.00023 0.02226 ± 0.00023 0.02227 ± 0.00020 0.02225 ± 0.00016 0.02226 ± 0.00016 0.02230 ± 0.00014

⌦ch2 . . . . . . . . . . . 0.1197 ± 0.0022 0.1186 ± 0.0020 0.1184 ± 0.0012 0.1198 ± 0.0015 0.1193 ± 0.0014 0.1188 ± 0.0010

100✓MC . . . . . . . . . 1.04085 ± 0.00047 1.04103 ± 0.00046 1.04106 ± 0.00041 1.04077 ± 0.00032 1.04087 ± 0.00032 1.04093 ± 0.00030

⌧ . . . . . . . . . . . . . 0.078 ± 0.019 0.066 ± 0.016 0.067 ± 0.013 0.079 ± 0.017 0.063 ± 0.014 0.066 ± 0.012

ln(1010As) . . . . . . . . 3.089 ± 0.036 3.062 ± 0.029 3.064 ± 0.024 3.094 ± 0.034 3.059 ± 0.025 3.064 ± 0.023

ns . . . . . . . . . . . . 0.9655 ± 0.0062 0.9677 ± 0.0060 0.9681 ± 0.0044 0.9645 ± 0.0049 0.9653 ± 0.0048 0.9667 ± 0.0040

H0 . . . . . . . . . . . . 67.31 ± 0.96 67.81 ± 0.92 67.90 ± 0.55 67.27 ± 0.66 67.51 ± 0.64 67.74 ± 0.46

⌦⇤ . . . . . . . . . . . . 0.685 ± 0.013 0.692 ± 0.012 0.6935 ± 0.0072 0.6844 ± 0.0091 0.6879 ± 0.0087 0.6911 ± 0.0062

⌦m . . . . . . . . . . . . 0.315 ± 0.013 0.308 ± 0.012 0.3065 ± 0.0072 0.3156 ± 0.0091 0.3121 ± 0.0087 0.3089 ± 0.0062

⌦mh2 . . . . . . . . . . 0.1426 ± 0.0020 0.1415 ± 0.0019 0.1413 ± 0.0011 0.1427 ± 0.0014 0.1422 ± 0.0013 0.14170 ± 0.00097

⌦mh3 . . . . . . . . . . 0.09597 ± 0.00045 0.09591 ± 0.00045 0.09593 ± 0.00045 0.09601 ± 0.00029 0.09596 ± 0.00030 0.09598 ± 0.00029

�8 . . . . . . . . . . . . 0.829 ± 0.014 0.8149 ± 0.0093 0.8154 ± 0.0090 0.831 ± 0.013 0.8150 ± 0.0087 0.8159 ± 0.0086

�8⌦
0.5
m . . . . . . . . . . 0.466 ± 0.013 0.4521 ± 0.0088 0.4514 ± 0.0066 0.4668 ± 0.0098 0.4553 ± 0.0068 0.4535 ± 0.0059

�8⌦
0.25
m . . . . . . . . . 0.621 ± 0.013 0.6069 ± 0.0076 0.6066 ± 0.0070 0.623 ± 0.011 0.6091 ± 0.0067 0.6083 ± 0.0066

zre . . . . . . . . . . . . 9.9+1.8
�1.6 8.8+1.7

�1.4 8.9+1.3
�1.2 10.0+1.7

�1.5 8.5+1.4
�1.2 8.8+1.2

�1.1

109As . . . . . . . . . . 2.198+0.076
�0.085 2.139 ± 0.063 2.143 ± 0.051 2.207 ± 0.074 2.130 ± 0.053 2.142 ± 0.049

109Ase�2⌧ . . . . . . . . 1.880 ± 0.014 1.874 ± 0.013 1.873 ± 0.011 1.882 ± 0.012 1.878 ± 0.011 1.876 ± 0.011

Age/Gyr . . . . . . . . 13.813 ± 0.038 13.799 ± 0.038 13.796 ± 0.029 13.813 ± 0.026 13.807 ± 0.026 13.799 ± 0.021

z⇤ . . . . . . . . . . . . 1090.09 ± 0.42 1089.94 ± 0.42 1089.90 ± 0.30 1090.06 ± 0.30 1090.00 ± 0.29 1089.90 ± 0.23

r⇤ . . . . . . . . . . . . 144.61 ± 0.49 144.89 ± 0.44 144.93 ± 0.30 144.57 ± 0.32 144.71 ± 0.31 144.81 ± 0.24

100✓⇤ . . . . . . . . . . 1.04105 ± 0.00046 1.04122 ± 0.00045 1.04126 ± 0.00041 1.04096 ± 0.00032 1.04106 ± 0.00031 1.04112 ± 0.00029

zdrag . . . . . . . . . . . 1059.57 ± 0.46 1059.57 ± 0.47 1059.60 ± 0.44 1059.65 ± 0.31 1059.62 ± 0.31 1059.68 ± 0.29

rdrag . . . . . . . . . . . 147.33 ± 0.49 147.60 ± 0.43 147.63 ± 0.32 147.27 ± 0.31 147.41 ± 0.30 147.50 ± 0.24

kD . . . . . . . . . . . . 0.14050 ± 0.00052 0.14024 ± 0.00047 0.14022 ± 0.00042 0.14059 ± 0.00032 0.14044 ± 0.00032 0.14038 ± 0.00029

zeq . . . . . . . . . . . . 3393 ± 49 3365 ± 44 3361 ± 27 3395 ± 33 3382 ± 32 3371 ± 23

keq . . . . . . . . . . . . 0.01035 ± 0.00015 0.01027 ± 0.00014 0.010258 ± 0.000083 0.01036 ± 0.00010 0.010322 ± 0.000096 0.010288 ± 0.000071

100✓s,eq . . . . . . . . . 0.4502 ± 0.0047 0.4529 ± 0.0044 0.4533 ± 0.0026 0.4499 ± 0.0032 0.4512 ± 0.0031 0.4523 ± 0.0023

f 143
2000 . . . . . . . . . . . 29.9 ± 2.9 30.4 ± 2.9 30.3 ± 2.8 29.5 ± 2.7 30.2 ± 2.7 30.0 ± 2.7

f 143⇥217
2000 . . . . . . . . . 32.4 ± 2.1 32.8 ± 2.1 32.7 ± 2.0 32.2 ± 1.9 32.8 ± 1.9 32.6 ± 1.9

f 217
2000 . . . . . . . . . . . 106.0 ± 2.0 106.3 ± 2.0 106.2 ± 2.0 105.8 ± 1.9 106.2 ± 1.9 106.1 ± 1.8

Table 5. Constraints on 1-parameter extensions to the base⇤CDM model for combinations of Planck power spectra, Planck lensing,
and external data (BAO+JLA+H0, denoted “ext”). All limits and confidence regions quoted here are 95 %.

Parameter TT TT+lensing TT+lensing+ext TT,TE,EE TT,TE,EE+lensing TT,TE,EE+lensing+ext

⌦K . . . . . . . . . . . . . . �0.052+0.049
�0.055 �0.005+0.016

�0.017 �0.0001+0.0054
�0.0052 �0.040+0.038

�0.041 �0.004+0.015
�0.015 0.0008+0.0040

�0.0039
⌃m⌫ [eV] . . . . . . . . . . < 0.715 < 0.675 < 0.234 < 0.492 < 0.589 < 0.194
Ne↵ . . . . . . . . . . . . . . 3.13+0.64

�0.63 3.13+0.62
�0.61 3.15+0.41

�0.40 2.99+0.41
�0.39 2.94+0.38

�0.38 3.04+0.33
�0.33

YP . . . . . . . . . . . . . . . 0.252+0.041
�0.042 0.251+0.040

�0.039 0.251+0.035
�0.036 0.250+0.026

�0.027 0.247+0.026
�0.027 0.249+0.025

�0.026
dns/d ln k . . . . . . . . . . �0.008+0.016

�0.016 �0.003+0.015
�0.015 �0.003+0.015

�0.014 �0.006+0.014
�0.014 �0.002+0.013

�0.013 �0.002+0.013
�0.013

r0.002 . . . . . . . . . . . . . < 0.103 < 0.114 < 0.114 < 0.0987 < 0.112 < 0.113
w . . . . . . . . . . . . . . . �1.54+0.62

�0.50 �1.41+0.64
�0.56 �1.006+0.085

�0.091 �1.55+0.58
�0.48 �1.42+0.62

�0.56 �1.019+0.075
�0.080
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Furthermore,



Near future developments 
expected

✦ Cosmic	graviton	background:	

★ Indirectly	from	r	

✤ CMB	B-mode	immediately	(Recall	BICEP2	festival)	

★ Even	direct	observation	

✤ by	(Ultimate)	DECIGO	

✦ Handle	on	quantum	gravity

RESCEU APCosPA Summer School on Cosmology and Particle Astrophysics (August 3rd, 2014, Matsumoto)

Masaki Ando
(Dept. of Physics, Univ. of Tokyo / 
National Astronomical Observatory Japan)

DECIGO:  Space 
Gravitational-wave Antenna

from	DECIGO	website



Higgs inflation

16 Planck Collaboration: Constraints on inflation

Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck in combination with other data sets, compared
to the theoretical predictions of selected inflationary models.

Planck	(2016)



Model

✦ Non-minimal	coupling	ξ	between	Higgs	and	
gravity	

✦ Effective	Planck	scale	changed	at	<H>	〜MP	/√ξ:	
MP

2	→	MP
2	+ξ<H>2	

✦ Flatter	potential	realized	→	inflation

S =

Z
d4x

p
�g


M2

P

2
R+ ⇠ |H|2 R+ LSM

�
Salopek,	Bond,	Bardeen	(1989);	Bezrukov,	Shaposhnikov	(2008)	



Problem?
✦ Large	ξ〜105	required	to	yield	small	
10­5	CMB	fluctuation	

★ Unnatural?	

★ Unitarity?	(Though	inflation	itself	OK)	

✦ Implicitly	assumes	form	of	all	higher	
dimensional	(φ/MP)n	terms Hamada, Kawai, Nakanishi, KO

Phys.Rev. D95 (2017) 103524



Critical Higgs inflation
✦ Criticality	seems	requirement	
from	quantum	gravity	

★ Flat	and	low	potential	
(compared	to	φ4〜1072GeV4)	

★ ξ〜10	suffices	for	viable	
inflation	

★ Tensor-to	scalar	ratio	r	
observable!

n ≥ 3, and omit them hereafter. By tuning the top mass for
a given Higgs mass, we can obtain arbitrarily small λmin.
This fact is crucial for our inflation scenario.
We note that for the potential to be monotonically

increasing [48], λmin must be larger than a critical value λc:

λmin ≥ λc ≔
β2

ð64π2Þ2
: ð15Þ

When λmin saturates this inequality,

λmin ¼ λc; ð16Þ

there appears a true saddle point of the potential
Vφ ¼ Vφφ ¼ 0. We see in Sec. VA that in prescription
I, this value λc also gives the true saddle point of the
modified potential: Uφ ¼ Uφφ ¼ 0.5

In the left, center, and right of Fig. 3, we plotMt, β2, and
μmin, respectively, with the critical value of λmin given in

Eq. (16). The band corresponds to the 95% C.L. for the
strong coupling constant measured at μ ¼ MZ, where

αsðMZÞ ¼ 0.1185$ 0.0006 ð17Þ

at the 1σ level [1]. We see that β2 does not depend much on
MH. In the following figures except Fig. 12, we take a
reference value β2 ¼ 0.5.6 μmin changes by an order of
magnitude when one includes the one-loop corrections to
the effective potential as shown in the right of Fig. 3. The
two-loop corrections are negligible compared with the one-
loop corrections; see e.g. Ref. [6]. In Fig. 3, we see that β2
and μmin differ between tree and one-loop levels, but note
that Mt is almost identical at both levels.

III. INFLATION MODEL

Let us consider the effective action of the SM-gravity
system in the local potential approximation. As we are
interested in the spatially constant field configuration and
the case where the Hubble parameter is much smaller than
the Planck scale, we restrict ourselves to the terms
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FIG. 2 (color online). Left: The tree-level Higgs potential (3) as a function of Higgs field φ. Right: The one-loop Higgs potential
(3)–(4). We take MH ¼ 125.9 GeV and αs ¼ 0.1185.
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FIG. 3 (color online). Mt (left), β2 (center), and μmin (right) that realize the condition λmin ¼ λc are plotted as functions ofMH . We have
imposed the condition λmin ¼ λc using the tree-level potential (3) and the one-loop one, (3)–(4), for the red and blue bands, respectively.
(The one-loop blue band is the upper one for left and right, whereas it is the lower for center.) The width of the bands corresponds to the
95% C.L. of αsðMZÞ. Dotted lines show the current 95% C.L. for MH; see Eq. (1).

5The numerical difference between the results from the
condition λmin ¼ 0 and from Eq. (16) is much smaller than the
deviation coming from the αsðMZÞ error. We have imposed
λmin ¼ 0 within a precision of 10−5 in the actual numerical
computation in writing Fig. 3. Note that λc ¼ 2.5 × 10−6β2.

6We have checked that the changes of spectral index, its
running, its running of running, and tensor-to-scalar ratio are
hardly seeable when we vary β2.

HAMADA et al. PHYSICAL REVIEW D 91, 053008 (2015)

053008-4

Hamada, Kawai, KO, Park
Phys.Rev.Lett. 112 (2014) 241301
Also,	[Bezrukov,	Shaposhnikov,	2014]

Hamada, Kawai, KO, Park

Phys.Rev. D91 (2015) 053008



Alternative
✦ Hill-climbing	Higgs	inflation	[Jinno,	Kaneta,	KO,	2017]

S =

Z
d

4
x

p
�g [F (�)R+ LSM]

✦ Instead	of	F(φ)	→	ξφ2,	F(φ)	→	0	can	cause	
inflation.	

★ F(φ)=0	at	V(φ)	=	0	point.	

★ Better	match	with	Nielsenʼs	MPP?



Important point hereafter
✦ Both	critical	and	Hill-climbing	Higgs	inflations	
are	almost	SM	slightly	below	Planck	scale.	

✦ “Slightly	below”	here	means	roughly	1017GeV	

★ This	is	also	good	old	string	scale.	

✦ “Almost”?	

★ We	put	Higgs-portal	scalar	DM	and	right-
handed	neutrinos.



Plan

1. SM	criticality	

2. Higgs	inflation	

3. Constraints	on	DM	and	neutrino



Recall

16 Planck Collaboration: Constraints on inflation

Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck in combination with other data sets, compared
to the theoretical predictions of selected inflationary models.

Planck	(2016)



1 Introduction

We have seen remarkable development on the observation of the cosmic microwave background
fluctuation. Currently the tensor-to-scalar ratio and the spectral index are fixed and bound
as ns = 0.968 ± 0.006 (1�) and r  0.09 (2�), respectively [1], and the single-field slow-roll
inflation paradigm has been established, in which the Higgs inflation [2, 3] is one of the best-
fit models. The Higgs field is the only elementary scalar whose existence is experimentally
confirmed. Within the Standard Model (SM), the Higgs potential can be very small and flat
around the Planck scale M

P

= 1/
p

8⇡G ' 2.4 ⇥ 1018 GeV, see e.g. Refs. [4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17], and this fact suggests that the Higgs field plays the role of
inflaton [18, 19].

In this paper, we assume that the Higgs field indeed serves as an inflaton above a scale ⇤
below which we may trust the renormalizable low-energy e↵ective field theory; see Fig. 1.
That is, above ⇤, the potential of the Higgs field becomes flat and the slow-roll inflation
is realized [18, 19]. The so-called critical Higgs inflation with non-minimal coupling ⇠ .
102 [20, 21, 22, 23] is a concrete realization of this idea, which leads to ⇤ ⇠ M

P

/
p

⇠.
When all the non-minimal couplings are not particularly large, ⇠ < 102, the renormalizable

low-energy e↵ective field theory is reliable up to 1017 GeV. Hereafter, we take ⇤ = 1017 GeV,
which is also the typical string scale. The dynamics above ⇤ can be anything as far as it
realizes an inflation along a field direction that is extrapolated from the low-energy Higgs
field [18, 19].

After the end of the inflation, the slow-roll condition on the Higgs field is violated and the
field rolls on the potential hill down to the electroweak (EW) scale. In order not to prevent
the rolling, the potential height must be smaller than the inflation energy V

inf

in the whole
region '  ⇤. Note that even if there exists a local maximum with its height smaller than
V
inf

, it should not prevent the rolling down to the EW scale because the slow-roll condition
is already violated.

As we do not specify the inflaton potential above ⇤, we cannot predict precisely the cos-
mological parameters such as the spectral index ns and the tensor-to-scalar ratio r. However,
we may still put a lower bound on V

inf

from the highest value of the Higgs potential in the
region ' < ⇤, which can be converted into the lower bound on r.

It is certain that there exists a dark matter (DM). In this paper, we take a Higgs-portal
Z
2

scalar field as one of the simplest realizations. We consider the generic region of the DM
mass m

DM

being larger than the Higgs mass. Then its thermal abundance fixes the relation
between the DM mass and the Higgs-DM coupling  to be m

DM

' ⇥ 3.2 TeV, and the spin-
independent DM-nucleon elastic cross section is fixed to be �

SI

= 8.4 ⇥ 10�46 cm2 [24, 25].

Slow-roll�

Higgs field value�

Effective Higgs potential�

'⇤

Vinf

Figure 1: Schematic figure for the Higgs field as an inflaton

3

Strategy

✦ From	low	energy	potential	Vφ<Λ,	we	get	lower	bound:  
Vinf	>	Vφ<Λmax.	

✦ In	slow-roll,	As	=	0.068	Vinf/r	(=2.2×10­9,	fixed)	

✦ So	we	have	lower	bound:	r	>	Vφ<Λmax/(3.2×1016GeV)4.

Vφ<Λ
Vinf

Hamada,	Kawai,	KO	(2014)



Note: This analysis 
can be performed 
for ANY model that 
changes λ running

Do	it	for	your	model.



Inflation-model 
independence

✦ This	analysis	does	not	assume	the	form	of	
inflaton	potential.	

✦ Can	be	derived	only	from	low	energy	data.	

✦ Can	be	critical	Higgs	inflation;	but	even	if	not,	
any	deformation	of	Higgs	potential	should	
obey	our	constraint,	if	the	modified	Higgs	
potential	at	high	scales	inflates	universe.



Higgs-portal Z2 scalar DM



Mass vs portal coupling
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FIG. 1: Contours of fixed relic density, labelled in terms of their fraction of the full dark matter density. Dark-shaded lower
regions are ruled out because they produce more than the observed relic density of dark matter. Left : a close-up of the mass
region mS ⇠ mh/2, where annihilations are resonantly enhanced. The region ruled out by the Higgs invisible width at 2� CL is
indicated by the darker-shaded region in the upper left-hand corner. The projected 1� constraint from 300 fb�1 of luminosity
at the 14TeV LHC is shown as the lighter-shaded region, corresponding to a limit of 5% on the Higgs branching fraction to
invisible states [50]. Right : relic density contours for the full range of mS.

supplemented by the extra contribution from SS ! hh.
The perturbative tree level result for the SS ! hh cross
section is given in appendix A.

The tabulation of �
h

(m⇤

h

) in ref. [51] assumes that m⇤

h

is the true Higgs mass, associated with a self-coupling
� = (m⇤

h

)2/2v20 . Here � ⇡ 0.13 is fixed by the true Higgs
mass however, and we find that for

p
s & 300GeV, we

must revert to perturbative expressions for �
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S K1(
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16Tm4
S K
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where K1, K2 are modified Bessel functions of the second
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�
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2

We henceforth refer to this as the ‘Lee-Weinberg equation’ with

reference to ref. [53], but note that it has also appeared earlier,

e.g. in ref. [54].
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2.3 signal events across the full mass range, e.g. 1.9 at
10 GeV/c2 and 2.6 at 1 TeV/c2. This limit is about a
factor of three more constraining than our previous re-
sults [3] (using the CL

s

approach [23, 24]), and represents
the most stringent limit on elastic WIMP-nucleon spin-
independent cross section for WIMP mass larger than
100 GeV/c2.

In summary, we report the combined WIMP search re-
sults using the data with an exposure of 54 ton-day, the
largest of its kind, from the PandaX-II experiment. Like
the previous attempts, no WIMP candidates have been
identified. This yields a most stringent limit for WIMP-
nucleon cross section for masses larger than 100 GeV/c2.
Theoretical models indicate the importance of enhancing
the current search sensitivity by another order of mag-
nitude. PandaX-II detector will continue to run until a
future upgrade to a multi-ton scale experiment at CJPL.
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High scale potential

Hamada,	Kawai,	KO	(2014)
Figure 1: Left: MS running couplings. The 95% confidence intervals are given for m2

B/I1,
yt(µ), �(µ), and 10��(µ); see text for more details. The intervals for the gauge couplings
gY , g2, and g

3

are too small to be seen. Right: Enlarged view around the horizontal axis
of Left. Darker bands are the 95% confidence intervals under the (theoretically unjustified)
assumption that the Tevatron mass (14) can be identified with the top pole mass Mt.

1.96� variation of Mt (15), where ↵s(Mz) and MH are fixed to their central values.
Similarly, we plot the bare Higgs mass-squared m2

B, divided by the quadratically
divergent integral I

1

= ⇤2/16⇡2, as a function of ⇤ [4, 53]. Note that the bare
mass m2

B is not the running mass.
We see that the Higgs quartic coupling � has a minimum around 1017GeV.

This is due to the fact that the beta function of � receives less negative contribution
from the top loop since yt becomes smaller at high scales.

We can fit the parameters at the reduced Planck scale7 MP := 1/
p
8⇡G =

2.4⇥ 1018GeV as

�(MP ) = �0.015� 0.019

✓

Mt � 173.3GeV

2.8GeV

◆

+ 0.002

✓

↵s(MZ)� 0.1184

0.0007

◆

+ 0.001

✓

MH � 125.6GeV

0.4GeV

◆

, (20)

m2

B

M2

P /16⇡
2

= 0.26 + 0.18

✓

Mt � 173.3GeV

2.8GeV

◆

� 0.02

✓

↵s(MZ)� 0.1184

0.0007

◆

� 0.01

✓

MH � 125.6GeV

0.4GeV

◆

,

(21)

�� = 0.000103 + 0.000069

✓

Mt � 173.3GeV

2.8GeV

◆

+ 0.000028

✓

Mt � 173.3GeV

2.8GeV

◆

2

� 0.000013

✓

MH � 125.6GeV

0.4GeV

◆

, (22)

where the dependence of �� on ↵s(MZ) is of O(10�7) and is not shown.
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↑Larger	mDM	(∝κ)

↓Larger	mt	(∝yt)	and	MR	(∝yν)



Basics
✦ Larger	κ	(∝	mDM)	makes	Planck-scale	
potential	V	higher.	

★ Gives	larger	(severer)	lower	bound	on	r.	

✦ Larger	top	mass	mt	gives	smaller	V.	

★ Potential	gets	negative	without	κ	
contribution.



Result



Lower bound on r

✦ Vertical	line	from	potential	positivity.
Figure 2: Left: Allowed regions for �S = 0. The region above each rainbow-colored line is
allowed for a given mt. Each vertical line denotes the lower bound on m

DM

from the positivity
of potential: V'⇤

> 0. The envelope of the rainbow-colored lines, indicated by the black
line, gives the lower bound on r for each m

DM

when one varies mt. We have shaded the region
m

DM

� 1585 GeV where perturbativity is violated. (See Fig. 8 for the corresponding plot with
right-handed neutrinos.) Right: Excluded regions for �S = 0 (below black line) and �S = 0.6
(below gray line). The vertical black (gray) shade in m

DM

� 1585 GeV (m
DM

� 1223 GeV) is
excluded by the perturbativity for �S = 0 (0.6). The blue line denotes r = 0.09 its the upper
side is excluded [1]. The red lines denote the lower bounds on DM mass, m

DM

= 630GeV
from XENON1T [26] (solid) and m

DM

= 750GeV from PandaX-II [28] (dashed).

5 Analysis with right-handed neutrinos

We introduce the heavy right-handed neutrinos that account for the observed neutrino masses
through the seesaw mechanism, and obtain the lower bound on r for each DM mass.

5.1 Method of analysis
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Right-handed neutrinos



Basics
✦ Right-handed	neutrinos	reduces	V.	

★ Contributes	like	top-quark	above	MR.	

★ Makes	lower	bound	on	r	smaller	
(milder).	

★ V	gets	negative	if	κ	(∝mDM)	too	small.



Recall

Hamada,	Kawai,	KO	(2014)
Figure 1: Left: MS running couplings. The 95% confidence intervals are given for m2

B/I1,
yt(µ), �(µ), and 10��(µ); see text for more details. The intervals for the gauge couplings
gY , g2, and g

3

are too small to be seen. Right: Enlarged view around the horizontal axis
of Left. Darker bands are the 95% confidence intervals under the (theoretically unjustified)
assumption that the Tevatron mass (14) can be identified with the top pole mass Mt.

1.96� variation of Mt (15), where ↵s(Mz) and MH are fixed to their central values.
Similarly, we plot the bare Higgs mass-squared m2

B, divided by the quadratically
divergent integral I

1

= ⇤2/16⇡2, as a function of ⇤ [4, 53]. Note that the bare
mass m2

B is not the running mass.
We see that the Higgs quartic coupling � has a minimum around 1017GeV.

This is due to the fact that the beta function of � receives less negative contribution
from the top loop since yt becomes smaller at high scales.

We can fit the parameters at the reduced Planck scale7 MP := 1/
p
8⇡G =

2.4⇥ 1018GeV as

�(MP ) = �0.015� 0.019

✓

Mt � 173.3GeV

2.8GeV

◆

+ 0.002

✓

↵s(MZ)� 0.1184

0.0007

◆

+ 0.001

✓

MH � 125.6GeV

0.4GeV

◆

, (20)

m2

B

M2

P /16⇡
2

= 0.26 + 0.18

✓

Mt � 173.3GeV

2.8GeV

◆

� 0.02

✓

↵s(MZ)� 0.1184

0.0007

◆

� 0.01

✓

MH � 125.6GeV

0.4GeV

◆

,

(21)

�� = 0.000103 + 0.000069

✓

Mt � 173.3GeV

2.8GeV

◆

+ 0.000028

✓

Mt � 173.3GeV

2.8GeV

◆

2

� 0.000013

✓

MH � 125.6GeV

0.4GeV

◆

, (22)

where the dependence of �� on ↵s(MZ) is of O(10�7) and is not shown.
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Result



Inclusion of νR

PandaX-II

✦ MR=1014-15GeV	widen	
allowed	region.	

✦ Still	r>~10­3	without	
fine-tuning.	

✦ Absolute	bound	
r>10­5.	

★ Even	when	we	
allow	maximum	
fine-tuning. XENON1T

Hamada,	Kawai,	Nakanishi,	KO	(2017)



For fixed mt (same)

PandaX

✦ MR=1014-15GeV	
widen	allowed	
region.	

✦ Still	r>~10­3	
without	fine-tuning.	

✦ Absolute	bound	
r>10­5.	

★ Even	allowing	
maximum	fine-
tuning. XENON1T

mt=173GeV

Hamada,	Kawai,	Nakanishi,	KO	(2017)



Backup for degenerate
✦ Possible	mass	patters.

m
1

[eV] m
2

[eV] m
3

[eV] Pattern

1. Normal Hierarchy 0 (set) 8.6 ⇥ 10�3 5.1 ⇥ 10�2 m
1

⌧ m
2

< m
3

2. Inverted Hierarchy 5.0 ⇥ 10�2 5.0 ⇥ 10�2 0 (set) m
1

' m
2

� m
3

3. Degenerate (NO) 0.1 (set) 1.0 ⇥ 10�1 1.1 ⇥ 10�1 m
1

' m
2

' m
3

3. Degenerate (IO) 1.1 ⇥ 10�1 1.1 ⇥ 10�1 0.1 (set) m
1

' m
2

' m
3

Table 1: Neutrino masses obtained from the absolute values of mass-squared di↵erences in
the notation of Ref. [37].

Number of e↵ective ⌫ Common mass m⌫ [eV]

1. Normal Hierarchy n⌫ = 1 5.1 ⇥ 10�2

2. Inverted Hierarchy n⌫ = 2 5.0 ⇥ 10�2

3. Degenerate n⌫ = 3 1.1 ⇥ 10�1

Table 2: Common neutrino mass that we use as an input.

mass pattern by setting the lightest one to be zero (0.1 eV) for the cases of normal/Inverted
Hierarchy (Degenerate), using the mass-squared di↵erences in Ref. [37]. For the three cases,
we approximate the heaviest n⌫ neutrinos as having a common mass m⌫ and the remaining
3 � n⌫ ones as being massless as shown in Table 2.7

Under the existence of heavy right-handed neutrino, the remaining input parameters to
determine V'⇤

are �S , , mt, and the right-handed neutrino mass M
R,i. For simplicity, we

assume that M
R,i (i = 1, 2, 3) are identical: M

R,i = M
R

. The Yukawa coupling of neutrino
is given by the seesaw mechanism: y⌫ =

p
2m⌫MR

/v, with v ' 246 GeV. We show the
�-functions in this case in Appendix A.

5.2 Results for Normal Hierarchy

We show the results for Normal Hierarchy, n⌫ = 1, in Fig. 3. The right-handed neutrino
mass M

R

is fixed in each panel: 1013, 1014, 1014.4 (' 2.5 ⇥ 1014), 1014.5 (' 3.2 ⇥ 1014),
1014.6 (' 4.0⇥ 1014), and 1014.7 (' 5.0⇥ 1014) in units of GeV. The color of envelope in each
panel, denoted by the thick line, corresponds to the color in the plots in Sec. 6, in which the
discussion for more general values of M

R

will be given. Note that the thick line is obtained by
tuning one parameter mt for fixed M

R

, and its minimum corresponds to the two parameter

7 If we want to consider a di↵erent m⌫ , we may simply rescale the right-handed neutrino mass MR in our
results, since m⌫ / M�1

R by the seesaw mechanism.
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✦ Our	assumption.	(MR	∝	unit	matrix)



Backup result
✦ For	2	and	3	degenerate	generations

Figure 6: The lower bound on r for each fixed M
R

(colored) and the envelope (black) with
�S = 0 and 171GeV < mt < 176 GeV. The orange line is for M

R

= 1013 GeV. The vertical
colored line comes from the lower end, mt > 171 GeV. See the caption of Fig. 2 for the shaded
region.
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Figure 6: The lower bound on r for each fixed M
R

(colored) and the envelope (black) with
�S = 0 and 171GeV < mt < 176 GeV. The orange line is for M

R

= 1013 GeV. The vertical
colored line comes from the lower end, mt > 171 GeV. See the caption of Fig. 2 for the shaded
region.
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Figure 8: The lower bound on r for each fixed mt (colored) with �S = 0. The black line
is their envelope, which is identical to the ones in Figs. 6 and 7 except for their right-most
boundary where they follow the mt = 176 GeV (blue) and 178 GeV (purple) lines in this
figure, respectively. See the left of Fig. 2 for the corresponding plot without right-handed
neutrinos and for the explanation of the shaded region.
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Figure 8: The lower bound on r for each fixed mt (colored) with �S = 0. The black line
is their envelope, which is identical to the ones in Figs. 6 and 7 except for their right-most
boundary where they follow the mt = 176 GeV (blue) and 178 GeV (purple) lines in this
figure, respectively. See the left of Fig. 2 for the corresponding plot without right-handed
neutrinos and for the explanation of the shaded region.
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Summary

1. SM	criticality	

2. Higgs	inflation	

3. Constraints	on	DM	and	neutrino



Thank you!


