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Vortex ground state of a permalloy microdisk

were taken in air at ambient temperature. An
MFM image of an array of 3 ! 3 dots of
permalloy 1 "m in diameter and 50 nm thick
is shown in Fig. 2. For a thin film of permal-
loy, the magnetic easy axis typically has an
in-plane orientation. If a permalloy dot has
a single domain structure or shows a do-
main pattern, in MFM a pair of magnetic
poles reflected by a dark and white contrast
should be observed in either case. In fact,
the image shows a clearly contrasted spot at
the center of each dot. It is suggested that
each dot has a curling magnetic structure
and the spots observed at the center of the
dots correspond to the area where the mag-
netization is aligned parallel to the plane
normal. However, the direction of the mag-
netization at the center seems to turn ran-

domly, either up or down, as reflected by
the different contrast of the center spots. This
seems to be reasonable, as up- and down-mag-
netizations are energetically equivalent without
an external applied field and do not depend on
the vortex orientation (clockwise or counter-
clockwise). The image shows simultaneously
that the dot structures are of high quality and
that the anisotropy effective in each dot is neg-
ligibly small, which is a necessary condition to
realize a curling magnetic structure. (The spots
in Fig. 2 around the circumference of each dot
are artifacts caused by the surface profile, main-
ly resulting from unremoved fractions of the
resist layer.)

MFM scans were also taken for an en-
semble of permalloy dots with varying di-
ameters, nominally from 0.1 to 1 "m (Fig.
3). These images were taken after applying
an external field of 1.5 T along an in-plane
direction (Fig. 3A) and parallel to the plane
normal (Fig. 3B). For dots larger than 0.3
"m in diameter, a contrast spot at the center
of each dot can be distinguished, and thus
the existence of vortices with a core of
perpendicular magnetization is confirmed.
Again, the two types of vortex core with
up- and down-magnetization are observed
(Fig. 3A). In contrast, after applying an
external field parallel to the plane normal,
all center spots exhibit the same contrast
(Fig. 3B), indicating that all the vortex core
magnetizations have been oriented into the
field direction.

From the above results, there is no doubt
that the contrast spots observed at the center
of each permalloy dot correspond to the
turned-up magnetization of a vortex core.
Although the vortex core is almost exactly
located at the center of the dot, its real diam-
eter cannot be estimated from the contrast
spot observed by MFM, as this is below the
lateral resolution power of this technique. To
resolve a vortex core by MFM, it is necessary
to pin the position of the core so that it is not
affected by a stray field from the tip. In the
experiments reported above, the vortex cores
apparently have been so stable that a clear
contrast appears in the MFM imaging pro-
cess. Magnetic vortices are novel nanoscale
magnetic systems, and it will be of great
importance in the near future to study the
dynamical behavior of turned-up and turned-
down magnetizations, that is, fluctuations of
the vortex cores.
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Fig. 1. Monte Carlo simulation for a
ferromagnetic Heisenberg spin struc-
ture comprising 32 ! 32 ! 8 spins
[courtesy of Ohshima et al. (2)]. (A) Top
surface layer. (B) Cross-section view
through the center. Beside the center,
the spins are oriented almost perpen-
dicular to the drawing plane, jutting out
of the plane to the right and into the
plane to the left, respectively. These
figures represent snapshots of the fluc-
tuating spin structure and are therefore
not symmetric with respect to the cen-
ter. The structure should become sym-
metric by time averaging.

Fig. 2. MFM image of an array of permalloy
dots 1 "m in diameter and 50 nm thick.

A B

Fig. 3. MFM image of an ensemble of 50-nm-thick permalloy dots with diameters varying from 0.1
to 1 "m after applying an external field of 1.5 T along an in-plane direction (A) and parallel to the
plane normal (B).

R E P O R T S

www.sciencemag.org SCIENCE VOL 289 11 AUGUST 2000 931

 o
n 

M
ay

 1
9,

 2
01

7
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

Shinjo et al, Science (2000)

net magnetization, and no stray field, but with a cost in the ex-
change energy. Because the exchange energy density decreases
with the distance from the center, the exchange energy of the
vortex state has a weaker dependence on D than does the mag-
netostatic energy of the single-domain state. Consequently, a
sufficiently large disk acquires the vortex state.4 For permalloy
disks 15 nm thick, the crossover occurs at a diameter of about
100 nm. The chirality of the vortex structure can be either coun-
terclockwise or clockwise.

The otherwise perfect vortex arrangement is altered be-
cause of the large exchange energy density near the singu-
larity at the vortex center. It is energetically favorable for the
magnetic moments within a small central region, called the
vortex core, to revolt and align perpendicular to the disk
plane, as shown in figure 1c. Spin-polarized scanning tun-
neling microscopy reveals that the vortex core size is ap-
proximately the exchange length.5 The polarity of the core
can be either up (p = +1) or down (p = −1). The vortex is
therefore a three-dimensional spin structure with four possi-
ble combinations of chirality and core polarity. Vortex cores
also appear in other contexts, most notably the normal cores
in the vortices in superconductors and superfluids, but those
vortices lack the two possible core polarities available to mag-
netic vortices. 

Square disks of similar size also adopt a vortex state,
shown in figure 1d, known as the Landau structure. The con-
figuration consists of four triangular domains with aligned
moments, in contrast to the continuously varying magneti-
zation of the moments in a circular disk. The four domain
walls intersect at the vortex core in the center of the disk.

Vortex structures have been observed by several differ-
ent techniques, such as MFM,6 photoemission electron mi-
croscopy,7 and electron holography. Most of the techniques
have either vertical or in-plane contrast but not both: MFM
can detect the polarity of the vortex core but not the chirality
of the vortex, whereas PEEM can detect the chirality of the
vortex but not the polarity of the core. The various techniques
reveal the intricate physics of the vortex state over the lim-
ited size range in which it exists.

Vortex dynamics
Figure 2 depicts the response of circular magnets to an ap-
plied magnetic field. At zero field, a 200-nm permalloy disk
is in the vortex state, and the in-plane magnetization is zero.
When a small magnetic field is applied, the portion of the vor-
tex with spins parallel to the field expands, and the vortex
moves perpendicular to the field. A counterclockwise vortex
moves to the left as viewed in the direction of the field, and
a clockwise vortex moves to the right. There is a concomitant
increase in magnetization linearly dependent on the applied
field H. The movement of the vortex continues until the vor-
tex core reaches the edge of the disk and disappears at the
annihilation field HA, at which M abruptly increases. A
slightly larger field beyond HA aligns the disk into the single-
domain state. When the applied field is then reduced, the
core does not reappear until H reaches the nucleation field
HN, at which point the magnetization drastically decreases.
The new vortex may or may not have the same chirality as
the original vortex. The values of HN and HA depend strongly
on the size, thickness, material, and defect density of the disk;
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Figure 1. Configurations of patterned nanomagnets. (a) A circular disk in the single-domain state, in which all the magnetic
moments are parallel, generates a magnetic field in its vicinity, which contributes to the magnetostatic energy. (b) The vortex
state has no stray magnetic field, but the exchange energy of interaction among the moments (white arrows) is nonzero. (c) The
vortex core, a small region in which the moments align perpendicular to the plane of the disk, decreases the exchange energy
at the center of the vortex. (d) Square disks can also acquire a vortex state, with four domains and four domain walls that inter-
sect at the vortex core. (e) A vortex pair can be formed in an elliptical disk. (f) The two vortex cores, at the intersections of the
thin black lines, move with respect to each other (red arrows) in response to an applied magnetic field H (black arrows).

Chien et al, Physics Today (2007)



The dynamics of a vortex core

The low-energy dynamics of a vortex disks can be captured by
the dynamics of the vortex-core position.

R(t) = (X(t), Y (t))

Pinning potential:

F = �KRForce:

U(R) = KR2/2
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The gyrotropic dynamics of a vortex core

* video credit: Magnetic Kaleidoscope: https://www.youtube.com/watch?v=Lw-N25ycIaQ

Force:

Velocity: dR

dt
? F

Why is the velocity perpendicular to the force?

F = �KR

https://www.youtube.com/watch?v=Lw-N25ycIaQ


The gyrotropic dynamics of a vortex core

Thiele, PRL (1972)

The polarity of a vortex determines the gyration direction.
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Motivated by a recent experimental demonstration of a chiral edge mode in an array of spinning
gyroscopes, we theoretically study the coupled gyration modes of topological magnetic solitons, vortices
and magnetic bubbles, arranged as a honeycomb lattice. The soliton lattice under suitable conditions is
shown to support a chiral edge mode like its mechanical analogue, the existence of which can be
understood by mapping the system to the Haldane model for an electronic system. The direction of the
chiral edge mode is associated with the topological charge of the constituent solitons, which can be
manipulated by an external field or by an electric-current pulse. The direction can also be controlled by
distorting the honeycomb lattice. Our results indicate that the lattices of magnetic solitons can serve as
reprogrammable topological metamaterials.

DOI: 10.1103/PhysRevLett.119.077204

Introduction.—The term metamaterials refers to a class
of man-made composite materials which can offer func-
tionalities beyond those found in nature via collective
dynamics of constituent elements [1]. Inspired by the
robust edge states in the topological electronic phases such
as quantum Hall states [2], topological metameterials with
analogous edge states have been proposed and realized in
optical [3], acoustic [1], magnetic [4], and mechanical
systems [5]. In particular, it has recently been shown
theoretically [6] and experimentally [7] that a honeycomb
lattice of spinning gyroscopes can support a chiral edge
mode that is protected from small perturbations such as
lattice distortions and thus can be identified as a topological
mechanical metamaterial. As discussed in Ref. [7], an open
challenge for its practical applications is to find a feasible
way to keep gyroscopes spinning.
Quantum mechanically, nature has already endowed us

with a permanent gyroscope: spin of a particle. This intrinsic
angular momentum manifests macroscopically through col-
lective dynamics of magnetic order. Particularly interesting is
the case of magnetic solitons with topologically nontrivial
textures, such as magnetic bubbles (or Skyrmions) and
vortices [8], whose motion experiences a gyrotropic force.
These solitons and their dynamics have attracted much
attention of physicists due to their fundamental properties
[9] and technological promise [10,11]. In particular, the
collective gyration modes of arrays of vortex disks have been
studied theoretically [12] and experimentally [13–16] as
reprogrammable metamaterials whose functionalities can be
controlled by changing vortices’ polarities and chiralities [17].
When viewing topological magnetic solitons as gyro-

scopes, it is natural to expect that a honeycomb lattice of the
solitons can support a chiral edge mode as its mechanical
analogues [6,7]. In this Letter, we verify the expectation
both by numerically solving the equations of motion for the
dynamics of coupled solitons and by mapping the system to

the Haldane model for an electron in graphene, which is
known to exhibit the quantum Hall effect [18]. We also
show that the direction of the edge mode can be controlled
either by changing the topological charge of the solitons or
by distorting the geometry of the honeycomb lattice. We
conclude the Letter with an experimental outlook, includ-
ing a possibility of the thermal chirality control using
ferrimagnets [19].
Model.—We consider a two-dimensional array of mag-

netic solitons such as vortices and magnetic bubbles, which
are characterized by their topological charges,

Q≡ 1

4π

Z
dxdyn · ð∂xn × ∂ynÞ; ð1Þ

which measures how many times the unit vector n along the
direction of the local magnetization wraps the unit sphere.
The elementary topological charges of vortices and mag-
netic bubbles areQ ¼ $1=2 and Q ¼ $1, respectively, the
sign of which is determined by the internal structure. See
Fig. 1 for schematic illustrations of them. The slow motion

(a)

(c)

(b)

(d)

FIG. 1. Schematic illustrations of (a) a vortex with the topo-
logical charge Q ¼ 1=2, (b) a vortex with Q ¼ −1=2, (c) a
magnetic bubble with Q ¼ 1, and (d) a magnetic bubble with
Q ¼ −1.
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p = +1 p = �1

D ¼ 2psaLlnðR=RcÞ ; (6c)

K ¼ l0LM2
s F1ðL=RÞ $ ðk=RÞ2
h i

: (6d)

Here, M represents the mass of the vortex, which originates
from the inertial term in the Lagrangian; G parametrizes the
gyrotropic force on the vortex, which is rooted in the spin
Berry phase; D parametrizes the viscous force on the vortex.
The right-hand side is the restoring force on the vortex, which
has been obtained in Ref. 9 for ferromagnetic vortices. When
the vortex core is away from the center of the disk, magneto-
static charges are created on the boundary. The corresponding
magnetostatic energy engenders a confining potential for the
vortex core, which is parametrized by K. The factor [F1(L/R)
$ (k/R)2] is a dimensionless number that is on the order of 0.1
for L/R % 0.1. The definition of the function F1(x), which is
an increasing function of x, can be found in Ref. 28. Note that
the gyrotropic coefficient is proportional to the spin density, G
/ s, and thus it vanishes at the angular momentum CP.

Let us study the excitation mode for the core dynamics
described by the above equation. To this end, it is convenient
to express the equations of motion in terms of the complex
variable, W & Xþ iY

M €W $ iG _W þ D _W ¼ $KW : (7)

When the damping constant is small, a ( 1, the main effect
of the viscous force is to broaden the linewidth of the excita-
tion spectrum, not to change the spectrum itself, and so we
will neglect it henceforth by setting D¼ 0. The oscillation fre-
quencies of the monochromatic solution, WðtÞ / exp ðixtÞ,
are given by

x6 ¼
G

2M
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

2M

" #2

þ K

M

s

: (8)

At the angular momentum CP, where the gyrotropic force
vanishes G¼ 0, the eigenfrequencies are given by x6

¼6xAFM with xAFM &
ffiffiffiffiffiffiffiffiffiffi
K=M

p
, which is reduced to Eq. (2)

if we recast it in terms of the microscopic parameters using
q % "h2=Ja3 with a the lattice constant. The absence of any
gyrotropic coupling between X and Y is one characteristic of
the antiferromagnetic dynamics of two-dimensional soli-
tons29 such as vortices16 and skyrmions.30 Note that two cir-
cularly polarized modes are degenerate at the CP, where the
spin configurations are in accordance with time-reversal
symmetry. Far away from the angular momentum CP, where
the gyrotropic force dominates the dynamic part in the equa-
tions of motion, the lowest eigenfrequencies are given by
x¼$psgn(c)xFM with xFM & K=jGj, which corresponds to
the ferromagnetic case.9 The crossover between antiferro-
magnetic and ferromagnetic dynamics occurs when the two
frequencies are comparable, xFM % xAFM, corresponding to

jGj % Gco &
ffiffiffiffiffiffiffiffi
MK
p

. The above Eq. (8) for general cases can
be written as a function of the gyrotropic coefficient G:

x6=xAFM ¼ G=2Gco6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG=2GcoÞ2 þ 1

q
, which is shown in

Fig. 2.
Let us provide a numerical estimate for the antiferro-

magnetic oscillation at the angular momentum CP. The alloy

Co1$xTbx at its CP, x) 17, has the exchange-stiffness coeffi-
cient, A) 1.4* 10$11 J/m, and the lattice constant,
a) 0.4 nm, which yield the microscopic exchange constant
J¼Aa) 35 meV.15 By using the inertia, q ¼ "h2=2Jza3,23,31

where z¼ 6 is the coordination number for three-
dimensional bipartite lattices, and the additional parameters,
L/R¼ 0.1 and Rc) k, we can estimate the eigenfrequency at
the CP: fAFM & xAFM/2p ) 30 GHz, which is one order-of-
magnitude larger than the observed frequencies in ferromag-
netic disks of several hundred MHz up to 2 GHz.3,5,10,11 For
example, for a cobalt disk of the same shape, the ferromag-
netic resonance frequency is calculated as fFM & xFM/2p
) 700 MHz when using the saturation magnetization Ms

) 1.2* 106 A/m measured for 30-nm-thick films.32

The dependence of the eigenfrequency on the gyrotropic
coefficient can be used to infer the angular momentum CP.
For example, when we measure the ferromagnetic resonance
(FMR) frequency of the vortex oscillation by varying the tem-
perature across the angular momentum CP denoted by TCP,
the lowest resonance frequency should attain its maximum at
TCP. In addition, since the rotational directions of the core
oscillation below and above TCP are opposite, TCP can be mea-
sured by detecting the change of the oscillation direction,
which can be probed by time-resolved scanning transmission
X-ray microscopy.8 See Fig. 3 for schematic illustrations of
the lowest oscillation frequency as a function of a tempera-
ture. These methods using a vortex oscillation in a ferrimag-
netic disk to determine TCP can be an alternative to a recent
proposal based on domain-wall speed measurements.33

FIG. 2. The eigenfrequencies x6/xAFM as functions of the gyrotropic coef-
ficient G/Gco. The solid and dashed lines show the eigenfrequencies for the
counter-clockwise (xþ) and clockwise (x$) rotations of the core. See the
main text for discussions.

FIG. 3. Schematic illustrations of the lowest eigenfrequency x of the
vortex-core oscillation as a function of temperature T, in the vicinity of the
angular momentum CP (TCP) subjected to an external field, H ¼ Hẑ. The
vortex with polarization p¼ 1 is considered. For CoTb disks, the maximum
eigenfrequency and the crossover field are estimated as xAFM ) 2p *
30 GHz and Hco ) 2 T, respectively. See the main text for discussions.
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¼6xAFM with xAFM &
ffiffiffiffiffiffiffiffiffiffi
K=M

p
, which is reduced to Eq. (2)

if we recast it in terms of the microscopic parameters using
q % "h2=Ja3 with a the lattice constant. The absence of any
gyrotropic coupling between X and Y is one characteristic of
the antiferromagnetic dynamics of two-dimensional soli-
tons29 such as vortices16 and skyrmions.30 Note that two cir-
cularly polarized modes are degenerate at the CP, where the
spin configurations are in accordance with time-reversal
symmetry. Far away from the angular momentum CP, where
the gyrotropic force dominates the dynamic part in the equa-
tions of motion, the lowest eigenfrequencies are given by
x¼$psgn(c)xFM with xFM & K=jGj, which corresponds to
the ferromagnetic case.9 The crossover between antiferro-
magnetic and ferromagnetic dynamics occurs when the two
frequencies are comparable, xFM % xAFM, corresponding to

jGj % Gco &
ffiffiffiffiffiffiffiffi
MK
p

. The above Eq. (8) for general cases can
be written as a function of the gyrotropic coefficient G:

x6=xAFM ¼ G=2Gco6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG=2GcoÞ2 þ 1

q
, which is shown in

Fig. 2.
Let us provide a numerical estimate for the antiferro-

magnetic oscillation at the angular momentum CP. The alloy

Co1$xTbx at its CP, x) 17, has the exchange-stiffness coeffi-
cient, A) 1.4* 10$11 J/m, and the lattice constant,
a) 0.4 nm, which yield the microscopic exchange constant
J¼Aa) 35 meV.15 By using the inertia, q ¼ "h2=2Jza3,23,31

where z¼ 6 is the coordination number for three-
dimensional bipartite lattices, and the additional parameters,
L/R¼ 0.1 and Rc) k, we can estimate the eigenfrequency at
the CP: fAFM & xAFM/2p ) 30 GHz, which is one order-of-
magnitude larger than the observed frequencies in ferromag-
netic disks of several hundred MHz up to 2 GHz.3,5,10,11 For
example, for a cobalt disk of the same shape, the ferromag-
netic resonance frequency is calculated as fFM & xFM/2p
) 700 MHz when using the saturation magnetization Ms

) 1.2* 106 A/m measured for 30-nm-thick films.32

The dependence of the eigenfrequency on the gyrotropic
coefficient can be used to infer the angular momentum CP.
For example, when we measure the ferromagnetic resonance
(FMR) frequency of the vortex oscillation by varying the tem-
perature across the angular momentum CP denoted by TCP,
the lowest resonance frequency should attain its maximum at
TCP. In addition, since the rotational directions of the core
oscillation below and above TCP are opposite, TCP can be mea-
sured by detecting the change of the oscillation direction,
which can be probed by time-resolved scanning transmission
X-ray microscopy.8 See Fig. 3 for schematic illustrations of
the lowest oscillation frequency as a function of a tempera-
ture. These methods using a vortex oscillation in a ferrimag-
netic disk to determine TCP can be an alternative to a recent
proposal based on domain-wall speed measurements.33

FIG. 2. The eigenfrequencies x6/xAFM as functions of the gyrotropic coef-
ficient G/Gco. The solid and dashed lines show the eigenfrequencies for the
counter-clockwise (xþ) and clockwise (x$) rotations of the core. See the
main text for discussions.

FIG. 3. Schematic illustrations of the lowest eigenfrequency x of the
vortex-core oscillation as a function of temperature T, in the vicinity of the
angular momentum CP (TCP) subjected to an external field, H ¼ Hẑ. The
vortex with polarization p¼ 1 is considered. For CoTb disks, the maximum
eigenfrequency and the crossover field are estimated as xAFM ) 2p *
30 GHz and Hco ) 2 T, respectively. See the main text for discussions.
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The dipolar-coupled dynamics of two vortices

symbols (top) exhibits a sole dip at 352 MHz, which
corresponds to the resonant frequency of the vortex core
gyration. When Iac is applied to one of the two neighboring
Py disks, clear mode splitting takes place as can be seen in
the black and red (bottom) spectra in the figure. It is
important to note that the gyration mode of the single
vortex with Iac ¼ 7:1 mA only shows lower frequency
shift and asymmetric broadening due to nonlinear effects
[21] as plotted by open symbols. Therefore, the observed
mode splitting is primarily due to the effect of the dipolar
coupling between the disks mediated by magnetic side
charges. The magnitude of the mode splitting for p1p2 ¼
"1 is slightly enhanced by several MHz compared to that
for p1p2 ¼ 1.

To gain insight into the dynamics of magnetostatically
coupled vortices, micromagnetic simulations based on the
Landau-Lifshitz-Gilbert equation [22] were performed on
pair of Py disks with identical physical dimensions.
Typical material parameters for Py are used: the saturation
magnetization Ms ¼ 1 T, the exchange stiffness constant

A ¼ 1:05# 10"11 J=m, the spin polarization P ¼ 0:4, and
the damping coefficient ! ¼ 0:01. The disk is divided into
rectangular prisms of 5# 5# 50 nm3 for the simulation.
A uniform Iac of 1:2# 1011 A=m2 is applied only to the
left disk.
After several nanoseconds from the start of excitation,

the core gyration settles in an almost circular orbit and its
amplitude is strongly enhanced at the resonance frequency
[14,15]. This induces the core gyration in the neighboring
disk, which also settles in the steady circular orbit, and the
collective gyration of the two vortices becomes fully syn-
chronized and the eigenfrequencies of these modes appear
in the spectra as characteristic resonance frequencies.
Figure 2(a) represents the time evolution of the core devi-
ations "y at lower and higher resonance frequencies with
respect to the single vortex for parallel polarities p1p2 ¼ 1
and the same chiralities c1c2 ¼ 1. At the lower frequency
(365 MHz) both left and right cores rotate almost in phase,
whereas at the high frequency (390 MHz) the phase of the
right core is retarded by approximately half a period. This
is very much in analogy with covalent bonding in diatomic
molecules or other forms of coupled oscillators. In the case

FIG. 2 (color online). (a) Simulated time evolutions of vortex
cores at resonance frequencies for ðp1p2; c1c2Þ ¼ ð1; 1Þ under ac
currents (365 and 390 MHz). Blue solid lines show the motions
of the current-excited core in the left disk and red lines corre-
spond to those of the indirectly excited core in the right disk.
(b) Dispersion relations of amplitude of steady gyrations. Values
of "ymax show the radii of steady gyrations (50 nsec after
beginning of the current flow). Black squares correspond to
the parallel polarities p1p2 ¼ 1 and red circles to antiparallel
polarities p1p2 ¼ "1 for opposite chiralities c1c2 ¼ "1.
Results of same chiralities c1c2 ¼ 1 are plotted by open sym-
bols. Simulation results for a single vortex are also presented by
green triangles for comparison.

FIG. 1 (color online). (a) Schematic diagram of the measure-
ment circuit and a SEM image of the sample. Two copper
electrodes are attached to one of the disks in the Permalloy
disk pair and the enveloped core is excited by a radio frequency
current. Dynamics of the cores can be detected as dc voltages
through the spin-torque diode effect utilized by a resistance
oscillation associated with the core gyration. A lock-in technique
is adopted at room temperature. (b) Frequency dependence of the
normalized dc voltage Vdc=Iac measured for an isolated disk
(green triangles) and for the paired disks with different polari-
ties; black squares for p1p2 ¼ 1, and red circles for p1p2 ¼ "1.
The ac current amplitudes Iac used for the measurements are
Iac ¼ 3:8 mA and 7.1 mA for the single disk, and Iac ¼ 6:3 mA
for the paired disks with the edge to edge distance d ¼ 75 nm.
Solid curves in each spectrum represent the best fit to the data
points using Eq. (1), thereby the dipolar coupling is evaluated.
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symbols (top) exhibits a sole dip at 352 MHz, which
corresponds to the resonant frequency of the vortex core
gyration. When Iac is applied to one of the two neighboring
Py disks, clear mode splitting takes place as can be seen in
the black and red (bottom) spectra in the figure. It is
important to note that the gyration mode of the single
vortex with Iac ¼ 7:1 mA only shows lower frequency
shift and asymmetric broadening due to nonlinear effects
[21] as plotted by open symbols. Therefore, the observed
mode splitting is primarily due to the effect of the dipolar
coupling between the disks mediated by magnetic side
charges. The magnitude of the mode splitting for p1p2 ¼
"1 is slightly enhanced by several MHz compared to that
for p1p2 ¼ 1.

To gain insight into the dynamics of magnetostatically
coupled vortices, micromagnetic simulations based on the
Landau-Lifshitz-Gilbert equation [22] were performed on
pair of Py disks with identical physical dimensions.
Typical material parameters for Py are used: the saturation
magnetization Ms ¼ 1 T, the exchange stiffness constant

A ¼ 1:05# 10"11 J=m, the spin polarization P ¼ 0:4, and
the damping coefficient ! ¼ 0:01. The disk is divided into
rectangular prisms of 5# 5# 50 nm3 for the simulation.
A uniform Iac of 1:2# 1011 A=m2 is applied only to the
left disk.
After several nanoseconds from the start of excitation,

the core gyration settles in an almost circular orbit and its
amplitude is strongly enhanced at the resonance frequency
[14,15]. This induces the core gyration in the neighboring
disk, which also settles in the steady circular orbit, and the
collective gyration of the two vortices becomes fully syn-
chronized and the eigenfrequencies of these modes appear
in the spectra as characteristic resonance frequencies.
Figure 2(a) represents the time evolution of the core devi-
ations "y at lower and higher resonance frequencies with
respect to the single vortex for parallel polarities p1p2 ¼ 1
and the same chiralities c1c2 ¼ 1. At the lower frequency
(365 MHz) both left and right cores rotate almost in phase,
whereas at the high frequency (390 MHz) the phase of the
right core is retarded by approximately half a period. This
is very much in analogy with covalent bonding in diatomic
molecules or other forms of coupled oscillators. In the case

FIG. 2 (color online). (a) Simulated time evolutions of vortex
cores at resonance frequencies for ðp1p2; c1c2Þ ¼ ð1; 1Þ under ac
currents (365 and 390 MHz). Blue solid lines show the motions
of the current-excited core in the left disk and red lines corre-
spond to those of the indirectly excited core in the right disk.
(b) Dispersion relations of amplitude of steady gyrations. Values
of "ymax show the radii of steady gyrations (50 nsec after
beginning of the current flow). Black squares correspond to
the parallel polarities p1p2 ¼ 1 and red circles to antiparallel
polarities p1p2 ¼ "1 for opposite chiralities c1c2 ¼ "1.
Results of same chiralities c1c2 ¼ 1 are plotted by open sym-
bols. Simulation results for a single vortex are also presented by
green triangles for comparison.

FIG. 1 (color online). (a) Schematic diagram of the measure-
ment circuit and a SEM image of the sample. Two copper
electrodes are attached to one of the disks in the Permalloy
disk pair and the enveloped core is excited by a radio frequency
current. Dynamics of the cores can be detected as dc voltages
through the spin-torque diode effect utilized by a resistance
oscillation associated with the core gyration. A lock-in technique
is adopted at room temperature. (b) Frequency dependence of the
normalized dc voltage Vdc=Iac measured for an isolated disk
(green triangles) and for the paired disks with different polari-
ties; black squares for p1p2 ¼ 1, and red circles for p1p2 ¼ "1.
The ac current amplitudes Iac used for the measurements are
Iac ¼ 3:8 mA and 7.1 mA for the single disk, and Iac ¼ 6:3 mA
for the paired disks with the edge to edge distance d ¼ 75 nm.
Solid curves in each spectrum represent the best fit to the data
points using Eq. (1), thereby the dipolar coupling is evaluated.
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The dipolar-coupled dynamics of five vortices

Han et al, Sci. Rep. (2013)

manipulated by vortex-state ordering, the dimensions of each disk,
and the nearest-neighbouring (NN) disks’s interdistance. This work
constitutes a milestone towards the practical achievement of this new
class of MCs harnessing their advantages.

Results
Sample structure and STXM measurements. Figure 1 shows a
scanning electron microscopy (SEM) image of the sample (Fig. 1a)
as well as STXM images of out-of-plane core magnetizations (Fig. 1b)
and in-plane curling magnetizations (Fig. 1c) in each of the five Py
disks (see Methods for the sample dimensions). Here, the
polarization and chirality configurations of the array are p 5
[11,21, 11, 21, 11] and C 5 [21, 21, 21, 21, 11],
respectively (see Fig. 1d), as obtained from the STXM images,
where p 5 11(21) corresponds to upward (downward) core
magnetization, and C 5 11 to counter-clockwise (CCW) and C 5
21 to clockwise (CW) in-plane curling magnetization. Note that the
sample has the opposite core orientations between the NN disks.

In order to trigger an excitation of vortex gyration in the first disk,
we launch a current pulse of 1.8 ns duration into the electrode stri-
pline, resulting in a field pulse of about 2.4 mT strength [see the
corresponding inset of Fig. 1(a)]. The propagation of vortex gyration
excited at the first disk is driven by dipolar interaction between the
NN disks where individual cores are shifted from their static center

positions, thereby yielding a non-zero effective in-plane magnetiza-
tion. Oscillatory motions of the individual cores are measured by
STXM operated in the pump-and-probe sampling mode, which
allows for imaging of the cores’ out-of-plane magnetizations utilizing
element-specific X-ray magnetic circular dichroism (XMCD) as
magnetic contrast at a lateral resolution of about 25 nm and a tem-
poral resolution as low as 35 ps (for further details, see Methods).

Vortex-core gyration propagation along dipolar-coupled disks.
Figure 2 shows the x (red color) and y (blue) components (Fig. 2a)
of the displacements of the individual cores and their trajectories
(Fig. 2b) in the disk plane, as measured by time-resolved STXM
(see also Supplementary Movie 1). The experimental results (top of
2a and 2b) are compared with the corresponding micromagnetic
simulations (bottom of 2a and 2b) performed using the OOMMF
code (version 1.2a4)46. The characteristic beating patterns along with
their modulation envelopes are observed in each of the five disks
(Fig. 2a). Owing to the direct excitation of the first disk, a large-
amplitude gyration in that disk is observed, and is then allowed to
propagate towards the NN disk and beyond through the array. The
vortex-gyration transfer to the next disk and its further propagation
are evidenced by the increase of the gyration amplitude in the second
and remaining disks along with the concomitant and remarkable
decrease of the first disk’s gyration amplitude. The ratio between
the maximum displacements in disk 5 and disk 1 is about 0.24.
Since our pump-and-probe measurements are carried out within a
time period of 60.8 ns, and the intrinsic damping of Py is not
negligible but rather significant (as strong as a , 0.01), we cannot
clearly observe backward propagation bounced at the last (5th) disk.
However, the signature of weak reflection is evident by the increase of
the gyration amplitude in the 4th disk at around 55 ns, as compared
with the simulation result.

It has been reported that coupled gyrations in two-dipolar-
coupled disks can be described by the superposition of the two nor-
mal modes32,35,36,38,39. Dipolar interaction between NN disks breaks
the radial symmetry of the potential energy of each core, which
depends on the disk pair’s relative vortex-state configuration (both
the polarization and chirality ordering). Analogously, for the case of

Figure 1 | SEM image and magnetization contrast for five-disk array.
(a) SEM image of sample with a array of five Py disks of identical
dimensions and center-to-center distance and with a stripline for
application of local magnetic field pulses to the left-end disk. The sample is
deposited onto a silicon nitride membrane. The inset shows a schematic
drawing of the field pulse used in the experiment. (b) and (c) represent
initial vortex states in the five individual disks, out-of-plane
magnetizations (the bright and dark spots correspond to the down and
upward core orientations, respectively) and in-plane curling
magnetizations (the curling orientations are indicated by the dashed
arrows), as obtained from STXM measurements, respectively. (d) is a
schematic illustration of the initial states of the sample.

Figure 2 | Experimentally measured and simulated time-resolved
trajectories of gyrating vortices. (a) Oscillatory x (red) and y (blue)
components of vortex-core positions in individual disks as measured by
STXM (upper row) and corresponding micromagnetic simulation data
(bottom row). (b) The trajectories of the vortex-core motion under a
pulsed magnetic field during the time period t 5 0-60.8 ns. Dotted arrows
indicate the sense of gyration of the individual cores.
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y x~0j ~y x~ Nz1ð Þdint

!! ~0, where y denotes the displacement of
beads, N is the number of elements, and dint is the inter-distance
between the elements. From this boundary condition, the wave vec-
tors of the allowed modes can be expressed simply as
k~m:p= Nz1ð Þdint½ $, where m 5 1, 2, … N-1, and N (For more
information, see Supplementary Information B). Thus, the discrete
(quantized) five modes’ wave numbers of the collective vortex gyra-
tions in the five-disk array are coincident with the values of
km~mp=6dint, where m 5 1, 2, 3, 4, 5.

Dispersion relation in coupled five-disk array. As described above,
collective vortex-gyration modes represent standing waves of
discrete wavelengths (i.e., quantized k values). Here, to extract the
dispersion (v - k relation) of all of the modes, we perform FFTs of the
collective core profiles for the individual modes according to
km~mp=6dint(where m 5 1, 2, 3, 4, 5) with a fixed value of dint 5
2250 nm for the real sample. Figure 4 shows the FFT powers in the
v-k spectra obtained from the experimental data, micromagnetic
simulation (for a 5 0.01) and numerical calculation of coupled
Thiele equation (for both cases of a 5 0.01 and a 5 0). FFTs of
each of the Xn and Yn, multiplied by Cn (i.e., CnXn and CnYn), are
performed. Using such reduced parameters of CnXn and CnYn, we
can consider only the polarity ordering for comparison between
experimental and numerical calculation data (see Supplementary
Information A).

The overall shape of the dispersion from the experimental data
qualitatively agrees well with those from the micromagnetic simula-
tions and numerical calculation, though they show quantitative dis-
crepancy in the frequency and FFT power between each mode. As
already mentioned above, discrepancies might be associated with the
chosen measurement parameters, sample imperfections as well as a
difference in the saturation magnetization between the experiment
and micromagnetic simulations. The white solid lines indicate the
result of an analytically derived explicit form for a 1D infinite array
(for the calculation, see Supplementary Information C). As noted

earlier, the intrinsic damping of vortex-core gyration in isolated disks
causes the broadening of the v values (see Fig. 4). For the case of no-
damping, five discrete quantized modes without the v–value broad-
ening are distinctly shown in the spectra (right panel).

Next, note that the overall shape of dispersion is concave down,
that is, a higher frequency at k 5 0 and a lower frequency at k 5 p/dint

for the case of CnXn, and concave up (vice versa) for CnYn. This
reversal between CnXn and CnYn can be understood in terms of the
lattice-number-dependent phase difference between the x and y
components of the vortex-core positions. Since the gyration’s rota-
tional sense is determined by the polarization p of a given disk, the
phase difference between the x and y components of the core position
vector in the nth disk is given as the product of p=2 and pn.
Accordingly, for the case of the antiparallel polarization between
the NN disks as in the sample, the phase difference between the x

and y components can be expressed as R:
p

dint
k̂

" #
{

p

2
, where

R~ndintx̂. This results in the shift of the k-vector in reciprocal space,
as k’~k{p=dint. Considering the real value of p=dint 5 1.3963 mm21

for dint 5 2250 nm), the experimental data are fully consistent for the
k shift by p=dintbetween CnXn and CnYn, as shown in Fig. 4.

Extension to semi-infinite or infinite 1D magnonic crystals. Based
on the above approach, we can extend to a array system comprised
of a semi-infinite or infinite 1D array composed of periodically
arranged disks (referred to as 1D MCs). Specifically, we accomp-
lish this by numerical calculation of a large number of disks (here,
N 5 201) and an analytically derived dispersion equation for infinite
arrays. Here we also consider specific parallel and antiparallel
ordering of both the p and C configurations between the NN disks:
Type I: [pn, Cn] 5 [(21)n11,1] for the antiparallel p and parallel C
ordering; Type II: [(21)n11, (21)n11] for the antiparallel p and C
ordering; Type III: [1,1] for the parallel p and C ordering, and
Type IV: [1, (21)n11] for the parallel p and antiparallel C ordering.
Considering those additional degrees of freedom for both the p and C
ordering, we analytically derive an explicit dispersion relation based
on linearized Thiele equations of coupled vortex-core motions,
taking into account the potential energy modified by dipolar
interaction between only NN disks32,33. Here, for simplicity, we
assume 1D arrays of an infinite number of equal-dimension disks.
For zero damping (a 5 0), the dispersion relation can be written as
v2~v2

0f2
jj
f2
\ with f2

jj
~1z2CnCnz1 g

jj

.
k

$ %
cos kdintð Þ and f2

\
~1{

2CnCnz1pnpnz1 g\=kð Þ cos kdintð Þ, where k is the stiffness coefficient
of the potential energy for isolated disks. gjj and g\ represent the
interaction strength along the x (here x is the bonding axis) and y
axes, respectively (for the detailed derivation procedure, see
Supplementary Information C). pnpn11 5 11(21) and CnCn11 5
1(21) indicate parallel (antiparallel) p and C ordering, respectively,
between the NN disks. In this case, the wave vector k has a
continuous value due to the infinite number of existing modes in
such an infinite 1D array. This explicit analytical form indicates that
the dispersion relation is a function of an isolated disk’s
eigenfrequency v0 and the coupling strength between the NN
disks, that is, gjj and g\, as well as those special p and C ordering.

The numerical calculation of the analytical form of
v2(k)~v2

0f2
jj
(k)f2

\(k) for four different types of vortex-state ordering
noted above are displayed by the white lines in Fig. 5a, which are in
excellent agreement with the dispersion spectrum from the FFTs of
the Xn components of the individual disks, which are obtained from
the numerical calculation of N coupled Thiele equations for the N 5
201 system with damping (a 5 0.01). While performing the FFTs, we
imposed a periodic boundary condition to describe such a semi-
infinite system in terms of traveling waves. Accordingly, the resultant
k-values are given as k~m 2p=Ndintð Þ, where m is any integer value

under the constraint of {
p

dint
vkƒ p

dint
. All of the dispersion curves

Figure 4 | Dispersion relations of collective vortex-gyration modes in a
array of five Py disks. Dispersion relations for all excited collective modes,
as extracted from FFTs of coupled oscillations of the vortex-core position
vector Xn multiplied by Cn, i.e. (a) CnXn and (b) CnYn, obtained from
experimental data, micromagnetic simulations, and numerical
calculations with damping (a 5 0.01) and without damping (a 5 0). The
white line indicates the analytically obtained dispersion curve for a 1D
infinite array of the same dimensions and interdistance as in the
simulations.
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The dipolar-coupled dynamics of many vortices?

Gẑ⇥ dUj

dt
+ Fj = 0equations of motion for jth vortex core:

Uj = Rj �R0
jcore displacement:

Fj =
@U

@Uj
conservative force:

U =
X

j

KU2
j/2 +

X

j 6=k

Ujk/2potential energy:

Uj = Rj �R0
j
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Topological edge mode in honeycomb vortex lattice
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The honeycomb lattice of vortex disks supports a chiral edge mode
in the coupled gyration dynamics. The chirality is determined by the 

polarity of the constituent vortices.
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Topological edge mode in honeycomb skyrmion lattice

The chirality can be changed by distorting the honeycomb lattice.

hopping between the second-nearest neighbors [18]. As can
be seen in Eq. (6), the sign of the phase can be controlled by
changing the angle θ̄jl between the neighboring bonds. Let
us take examples shown in Fig. 3. In Fig. 3(a), sin 2θ̄jl is
positive (negative) if we make a right (left) turn to go from j
to l; in Fig. 3(c), sin 2θ̄jl vanishes; in Fig. 3(e), the sign of
sin 2θ̄jl is opposite to the case in Fig. 3(a) for all pairs of j
and k. Since the staggered phase changes its sign between
(a) and (c) with vanishing in (b), we expect the change of
the chirality of the topological edge mode from (a) to (c) via
the gap closing in (b) [7]. We verify this expected
dependence of the chirality on the shape of the constituent
hexagons by numerically solving Eq. (4) below by taking
the approach used in Ref. [7], which has studied the
analogous problem for gyroscope lattices.
Let us consider a honeycomb lattice of magnetic bubbles

with the topological charge Q ¼ 1, which can appear as a
ground state of a magnetic disk with perpendicular

anisotropy [24]. The constituent disks are connected by
ferromagnetic strips so that neighboring magnetic bubbles
can interact with each other via the exchange energy. The
coupled gyration modes of magnetic bubbles in a one-
dimensional magnetic strip have been studied by micro-
magnetic simulations in Ref. [25], according to which the
dominant contributions to the interaction comes from the
exchange energy. We model the exchange-driven (repul-
sive) interaction as a function of the distance, fðRj;RkÞ ¼
fðjRj −RkjÞ by following Refs. [26]. To the second order
in the displacements, the interaction can be written in
the form of Eq. (3) with I∥ ¼ −f00 and I⊥ ¼ f0=djk. Since
the parameters for the magnetic bubble interactions are
not known unlike the well-studied vortex interactions, we
adopt the parameters for vortices: ζ¼−0.05ω0 and ξ ¼
−0.15ω0, in which the minus sign represent the repulsive
interactions.
Equation (4) is solved for three hexagonal lattices

composed of distorted hexagons. Fig. 3(b) shows the
one-dimensional dispersion for the coupled magnetic
bubble gyration when the angles are θjk ¼ π=4, 7π=4,
3π=2 for the sublattice sites j at Y-shaped junctions. This
case is similar to the vortex honeycomb lattice composed of
regular hexagons, and thus exhibits the chiral edge mode
rotating the boundary counterclockwise, same as the
precession of individual magnetic bubbles. Figure 3(d)
shows the normal-mode dispersion when the angles are
θjk ¼ 0, π, 3π=2 for the same sublattice sites j. In this
case, the last term in Eq. (6) vanishes and thus the bulk
band is gapless; the topological edge mode does not exist.
Figure 3(f) shows the dispersion when the angles are
θjk ¼ −π=4, 7π=4, 3π=2 for the aforementioned sublattice.
In this case, the sign of the last term changes from the case
of (a) and thereby exhibits the chiral edge mode rotating
the boundary clockwise, opposite to the local precession of
the constituent magnetic bubbles.
Discussion.—We have shown that a honeycomb lattice

of magnetic vortices and bubbles can exhibit a chiral edge
mode via their coupled gyrations, the direction of which
can be controlled by flipping the topological charge or by
distorting the lattice geometry. The dispersion of a coupled
vortex gyration has been investigated experimentally in
two-dimensional disk arrays via ferromagnetic-resonance
spectroscopy and scanning transmission x-ray microscopy
[16] which leads us to believe that experimental realization
of our proposal for a vortex honeycomb lattice is within the
current experimental reach. The experimental exploration
of the chiral edge mode in a magnetic bubble lattice seems
to be more challenging, as reflected in the relative lack of
experimental studies on the dynamics of engineered mag-
netic bubble lattices.
We would like to mention that there is a class of

ferrimagnets which allows us to thermally control the
chirality of the edges modes. These are rare-earth
transition-metal alloys such as GdFeCo and CoTb,

(a)

(c)

(e) (f)

(d)

(b)

FIG. 3. (a) A schematic illustration of magnetic bubbles with
the topological charge Q ¼ 1 (drawn as circles) in a honeycomb
lattice with zigzag edges. The black lines between circles
represent the exchange-coupled interactions between magnetic
bubbles connected by the magnetic strips. (b) The one-
dimensional dispersion for the coupled gyration modes for the
system shown in (a). (c), (d) Analogous figures when the angles
between nearest bonds are multiples of π=2, for which
the dispersion for the bulk is gapless and thus the topological
edge mode is not supported. (e), (f) Analogous figures for the
system exhibiting the chiral edge mode in the opposite direction
to (a) and (b).
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were taken in air at ambient temperature. An
MFM image of an array of 3 ! 3 dots of
permalloy 1 "m in diameter and 50 nm thick
is shown in Fig. 2. For a thin film of permal-
loy, the magnetic easy axis typically has an
in-plane orientation. If a permalloy dot has
a single domain structure or shows a do-
main pattern, in MFM a pair of magnetic
poles reflected by a dark and white contrast
should be observed in either case. In fact,
the image shows a clearly contrasted spot at
the center of each dot. It is suggested that
each dot has a curling magnetic structure
and the spots observed at the center of the
dots correspond to the area where the mag-
netization is aligned parallel to the plane
normal. However, the direction of the mag-
netization at the center seems to turn ran-

domly, either up or down, as reflected by
the different contrast of the center spots. This
seems to be reasonable, as up- and down-mag-
netizations are energetically equivalent without
an external applied field and do not depend on
the vortex orientation (clockwise or counter-
clockwise). The image shows simultaneously
that the dot structures are of high quality and
that the anisotropy effective in each dot is neg-
ligibly small, which is a necessary condition to
realize a curling magnetic structure. (The spots
in Fig. 2 around the circumference of each dot
are artifacts caused by the surface profile, main-
ly resulting from unremoved fractions of the
resist layer.)

MFM scans were also taken for an en-
semble of permalloy dots with varying di-
ameters, nominally from 0.1 to 1 "m (Fig.
3). These images were taken after applying
an external field of 1.5 T along an in-plane
direction (Fig. 3A) and parallel to the plane
normal (Fig. 3B). For dots larger than 0.3
"m in diameter, a contrast spot at the center
of each dot can be distinguished, and thus
the existence of vortices with a core of
perpendicular magnetization is confirmed.
Again, the two types of vortex core with
up- and down-magnetization are observed
(Fig. 3A). In contrast, after applying an
external field parallel to the plane normal,
all center spots exhibit the same contrast
(Fig. 3B), indicating that all the vortex core
magnetizations have been oriented into the
field direction.

From the above results, there is no doubt
that the contrast spots observed at the center
of each permalloy dot correspond to the
turned-up magnetization of a vortex core.
Although the vortex core is almost exactly
located at the center of the dot, its real diam-
eter cannot be estimated from the contrast
spot observed by MFM, as this is below the
lateral resolution power of this technique. To
resolve a vortex core by MFM, it is necessary
to pin the position of the core so that it is not
affected by a stray field from the tip. In the
experiments reported above, the vortex cores
apparently have been so stable that a clear
contrast appears in the MFM imaging pro-
cess. Magnetic vortices are novel nanoscale
magnetic systems, and it will be of great
importance in the near future to study the
dynamical behavior of turned-up and turned-
down magnetizations, that is, fluctuations of
the vortex cores.
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Fig. 1. Monte Carlo simulation for a
ferromagnetic Heisenberg spin struc-
ture comprising 32 ! 32 ! 8 spins
[courtesy of Ohshima et al. (2)]. (A) Top
surface layer. (B) Cross-section view
through the center. Beside the center,
the spins are oriented almost perpen-
dicular to the drawing plane, jutting out
of the plane to the right and into the
plane to the left, respectively. These
figures represent snapshots of the fluc-
tuating spin structure and are therefore
not symmetric with respect to the cen-
ter. The structure should become sym-
metric by time averaging.

Fig. 2. MFM image of an array of permalloy
dots 1 "m in diameter and 50 nm thick.

A B

Fig. 3. MFM image of an ensemble of 50-nm-thick permalloy dots with diameters varying from 0.1
to 1 "m after applying an external field of 1.5 T along an in-plane direction (A) and parallel to the
plane normal (B).
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= metataoms with the topological stability

We can create metamaterials with soliton metaatoms,
which can exhibit novel phases and can provide unusual functionalities.



The new collection of metaatoms

vortex skyrmion
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FIG. 1. (Color online) Six configurations of a Bloch point with skyrmion number q = +1 (top row) and −1 (bottom row). Hedgehog Bloch
points (1) are shown in the left column. Bloch points in the middle and right columns are obtained from hedgehogs by a global rotation of
magnetization through 90◦ and 180◦, respectively.

contains a Bloch point, rather than a vortex, so we shall refer
to it as a Bloch-point wall (BPW). The skyrmion charge of the
BP is ±1 (negative for a head-to-head domain wall).

The domain-wall topology of magnetization in a magnetic
wire provides an easy way to apply a force to a Bloch point:
a uniform magnetic field H0 parallel to the axis of the wire
pushes the domain wall with a force µ0QmH0, where µ0 is the
magnetic constant 4π × 10−7 H/m, R is the radius of the wire,
and Qm = ±2πR2Ms is the magnetic charge of the domain
wall (positive for a head-to-head domain wall). If the Bloch
point is pinned, the wall is unable to move until the applied
field is sufficiently strong to overcome the pinning force.

The pinning of a Bloch point in an atomic lattice has a
simple origin. Picture a BP moving through a simple cubic
lattice of magnetic atoms along one of the cubic axes (Fig. 3).
The BP’s energy is lowest when it is at the center of a cubic cell
(z = 0), farthest from the magnetic dipoles in its corners. It is
highest (along that trajectory) when the BP is at the center of a
face (z = a/2). A simple model of the Bloch point’s energy on
this straight line is U (z) = −U0 cos (2πz/a), where a is the
lattice constant. The amplitude U0 can be estimated as follows.
The primary source of the pinning potential is the exchange

energy Eex = A
∫

d3r ∂im̂ · ∂im̂, where A is the exchange
constant with the dimension of energy per unit length. We
thus expect that U0 = cAa, where c is a numerical constant
of order 1. This gives the maximal pinning force Fp = 2πcA
that is independent of the lattice constant a. The critical field
for depinning a domain wall with a Bloch point in a magnetic
wire of radius R is then

Hc = cA

µ0MsR2
= cMs

2
ℓ2

ex

R2
, (3)

where ℓex =
√

2A/µ0M2
s is the exchange length. For a typical

ferromagnet (permalloy, A = 1.3 × 10−11 J/m, Ms = 8 ×
105 A/m, ℓex = 5.7 nm), we obtain a pinning force of order
10−11 N. A permalloy wire with radius R = 50 nm would
have a sizable depinning field Hc ≈ 60 Oe assuming c ≈ 1.
The numerical constant c, of course, cannot be determined by
dimensional analysis and will be derived using a variational
model of a Bloch point below.

This paper is organized as follows. In Sec. II, we compute
the lattice potential of a magnetic BP and the associated critical
field for a Bloch-point domain wall. In Sec. III, we compare
the computed value against numerical simulations using the

FIG. 2. (Color online) (a) The transverse wall in a cylindrical nanowire of radius 10 (nm). (b) The Bloch point wall in a cylindrical nanowire
of radius 30 (nm). The left (right) panels are snapshots of magnetization at the center of the cylinder from the negative x (positive z) direction.
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monopole domain wall

Thank you!


