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Figure 7

The Missing Satellites Problem: Predicted ⇤CDM substructure (left) vs. known Milky Way
satellites (right). The image on the left shows the ⇤CDM dark matter distribution within a sphere
of radius 250 kpc around the center of a Milky-Way size dark matter halo (simulation by V.
Robles and T. Kelley in collaboration with the authors). The image on the right (by M. Pawlowski
in collaboration with the authors) shows the current census of Milky Way satellite galaxies, with
galaxies discovered since 2015 in red. The Galactic disk is represented by a circle of radius 15 kpc
at the center and the outer sphere has a radius of 250 kpc. The 11 brightest (classical) Milky Way
satellites are labeled by name. Sizes of the symbols are not to scale but are rather proportional to
the log of each satellite galaxy’s stellar mass. Currently, there are ⇠ 50 satellite galaxies of the
Milky Way compared to thousands of predicted subhalos with Mpeak & 107 M�.

see, e.g., Rees & Ostriker 1977). According to Figure 6, these physical e↵ects are likely to

become dominant in the regime of ultra-faint galaxies M? . 105M�.

The question then becomes: can we simply adopt the abundance-matching relation

derived from field galaxies to “solve” the Missing Satellites Problem down to the scale of

the classical MW satellites (i.e., Mvir ' 1010M� $ M? ' 106M�)? Figure 8 (modified from

Garrison-Kimmel et al. 2017a) shows that the answer is likely “yes.” Shown in magenta is

the cumulative count of Milky Way satellite galaxies within 300 kpc of the Galaxy plotted

down to the stellar mass completeness limit within that volume. The shaded band shows the

68% range predicted stellar mass functions from the dark-matter-only ELVIS simulations

(Garrison-Kimmel et al. 2014) combined with the AM relation shown in Figure 6 with zero

scatter. The agreement is not perfect, but there is no over-prediction. The dashed lines show

how the predicted satellite stellar mass functions would change for di↵erent assumed (field

galaxy) faint-end slopes in the calculating the AM relation. An important avenue going

forward will be to push these comparisons down to the ultra-faint regime, where strong

baryonic feedback e↵ects are expected to begin shutting down galaxy formation altogether.

2.2. Cusp, Cores, and Excess Mass

As discussed in Section 1, ⇤CDM simulations that include only dark matter predict that

dark matter halos should have density profiles that rise steeply at small radius ⇢(r) / r
�� ,

with � ' 0.8� 1.4 over the radii of interest for small galaxies (Navarro et al. 2010). This is
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Basic Questions

✦ What do extra-Galactic observations say about the nature 
of dark matter?  

✦ What are the predictions (and limitations) of simulations of non-
standard DM models? 

✦ What is the role of astrophysical (`baryonic’) feedback 
processes?  

✦ What is the current status of constraints from astrophysical 
observations?
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Dark Matter Vocabulary
Linear perturbation theory

Figure 2

The ⇤CDM dimensionless power spectrum (solid lines, Equation 1) plotted as a function of linear
wavenumber k (bottom axis) and corresponding linear mass Ml (top axis). The bottom panel
spans all physical scales relevant for standard CDM models, from the particle horizon to the
free-streaming scale for dark matter composed of standard 100 GeV WIMPs on the far right. The
top panel zooms in on the scales of interest for this review, marked with a rectangle in the bottom
panel. Known dwarf galaxies are consistent with occupying a relatively narrow 2 decade range of
this parameter space – 109 � 1011 M� – even though dwarf galaxies span approximately 7 decades
in stellar mass. The e↵ect of WDM models on the power spectrum is illustrated by the dashed,
dotted, and dash-dotted lines, which map to the (thermal) WDM particle masses listed. See
Section 3.2.1 for a discussion of power suppression in WDM.
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Dark Matter Vocabulary
Hierarchical structure formation

Dark matter fluctuations… 

… grow into dark matter clumps (“haloes”)

Galaxies form in potential wells of DM haloes… 

… and form groups as haloes grow and merge

collisionless BoltzmannPoisson

gas heats, cools,

condenses

mergers & accretion



parent halo

sub-halo

``main” halo ``singleton” central

satellite

central

Dark Matter Vocabulary
Non-linear regime



Dark Matter Vocabulary
Non-linear regime

Cosmic web Halo and substructure

interest. For a more complete discussion of primordial fluctuations and the processed power

spectrum we recommend that readers consult Mo, van den Bosch & White (2010).

It is useful to associate each wavenumber with a mass scale set by its characteristic

length rl = �/2 = ⇡/k. In the early Universe, when � ⌧ 1, the total amount of matter

contained within a sphere of comoving Lagrangian radius rl at z = 0 is

Ml =
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3

r
3
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The mapping between wave number and mass scale is illustrated by the top and bottom

axis in Figure 2. The processed linear power spectrum for ⇤CDM shown in the bottom

panel (solid line) spans the horizon scale to a typical mass cuto↵ scale for the most common

cold dark matter candidate (⇠ 10�6
M�; see discussion in Section 1.6). A line at � = 1

is plotted for reference, showing that fluctuations born on comoving length scales smaller

than rl ⇡ 10h�1 Mpc ⇡ 14Mpc have gone non-linear today. The top panel is zoomed in on

the small scales of relevance for this review (which we define more precisely below). Typical

regions on these scales have collapsed into virialized objects today. These collapsed objects

– dark matter halos – are the sites of galaxy formation.

1.3. Dark matter halos

1.3.1. Global properties. Soon after overdense regions of the Universe become non-linear,

they stop expanding, turn around, and collapse, converting potential energy into kinetic

energy in the process. The result is virialized dark matter halos with masses given by

Mvir =
4⇡
3

R
3
vir � ⇢m , (4)

where � ⇠ 300 is the virial over-density parameter, defined here relative to the background

matter density. As discussed below, the value of Mvir is ultimately a definition that requires

some way of defining a halo’s outer edge (Rvir). This is done via a choice for �. The

numerical value for � is often chosen to match the over-density one predicts for a virialized

dark matter region that has undergone an idealized spherical collapse (Bryan & Norman

1998), and we will follow that convention here. Note that given a virial mass Mvir, the

virial radius, Rvir, is uniquely defined by Equation 4. Similarly, the virial velocity

Vvir ⌘

r
GMvir

Rvir
, (5)

is also uniquely defined. The parameters Mvir, Rvir, and Vvir are equivalent mass labels –

any one determines the other two, given a specified over-density parameter �.

Galaxy Clusters:
Mvir ⇡ 1015M�
Vvir ⇡ 1000 km s�1

Milky Way:
Mvir ⇡ 1012M�
Vvir ⇡ 100 km s�1

Smallest Dwarfs:
Mvir ⇡ 109M�
Vvir ⇡ 10 km s�1

One nice implication of Equation 4 is that a present-day object with virial mass Mvir

can be associated directly with a linear perturbation with mass Ml. Equating the two gives

Rvir = 0.15

✓
�
300

◆�1/3

rl . (6)

We see that a collapsed halo of size Rvir is approximately 7 times smaller in physical

dimension than the comoving linear scale associated with that mass today.
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Dark Matter Vocabulary
“Small” scales

With this in mind, Equations 3-6 allow us to self-consistently define “small scales” for

both the linear power spectrum and collapsed objects: M . 1011 M�. As we will discuss,

potential problems associated with galaxies inhabiting halos with Vvir ' 50 km s�1 may

point to a power spectrum that is non-CDM-like at scales rl . 1Mpc.

WE DEFINE “SMALL SCALES” AS THOSE SMALLER THAN:

M ⇡ 1011 M� $ k ⇡ 3Mpc�1
$ rl ⇡ 1Mpc $ Rvir ⇡ 150 kpc $ Vvir ⇡ 50 km s�1

.

As alluded to above, a common point of confusion is that the halo mass definition is

subject to the assumed value of �, which can vary by a factor of ⇠ 3 depending on the

author. For the spherical collapse definition, � ' 333 at z = 0 (for our fiducial cosmology)

and asymptotes to � = 178 at high redshift (Bryan & Norman 1998). Another common

choice is a fixed � = 200 at all z (often labeled M200m in the literature). Finally, some

authors prefer to define the virial overdensity as 200 times the critical density, which,

according to Equation 4 would mean �(z) = 200⇢c(z)/⇢m(z). Such a mass is commonly

labeled “M200” in the literature. For most purposes (e.g., counting halos), the precise choice

does not matter, as long as one is consistent with the definition of halo mass throughout an

analysis: every halo has the same center, but its outer radius (and mass contained within

that radius) shifts depending on the definition. In what follows, we use the spherical collapse

definition (� = 333 at z = 0) and adhere to the convention of labeling that mass “Mvir”.

Before moving on, we note that it is also possible (and perhaps even preferable) to give

a halo a “mass” label that is directly tied to a physical feature associated with a collapsed

dark matter object rather than simply adopting a �. More, Diemer & Kravtsov (2015) have

advocated the use of a “splash-back” radius , where the density profile shows a sharp break

(this typically occurs at ⇠ 2Rvir). Another common choice is to tag halos based not on a

mass but on Vmax, which is the peak value of the circular velocity Vc(r) =
p

GM(< r)/r

as one steps out from the halo center. For any individual halo, the value of Vmax (& Vvir)

is linked to the internal mass profile or density profile of the system, which is the subject

of the next subsection. As discussed below, the ratio Vmax/Vvir increases as the halo mass

decreases.

1.3.2. Abundance. In principle, the mapping between the initial spectrum of density fluctu-

ations at z ! 1 and the mass spectrum of collapsed (virialized) dark matter halos at later

times could be extremely complicated: as a given scale becomes non-linear, it could a↵ect

the collapse of nearby regions or larger scales. In practice, however, the mass spectrum of

dark matter halos can be modeled remarkably well with a few simple assumptions. The first

of these was taken by Press & Schechter (1974), who assumed that the mass spectrum of col-

lapsed objects could be calculated by extrapolating the overdensity field using linear theory

even into the highly non-linear regime and using a spherical collapse model (Gunn & Gott

1972). In the Press-Schechter model, the dark matter halo mass function – the abundance
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With this in mind, Equations 3-6 allow us to self-consistently define “small scales” for

both the linear power spectrum and collapsed objects: M . 1011 M�. As we will discuss,

potential problems associated with galaxies inhabiting halos with Vvir ' 50 km s�1 may

point to a power spectrum that is non-CDM-like at scales rl . 1Mpc.

WE DEFINE “SMALL SCALES” AS THOSE SMALLER THAN:

M ⇡ 1011 M� $ k ⇡ 3Mpc�1
$ rl ⇡ 1Mpc $ Rvir ⇡ 150 kpc $ Vvir ⇡ 50 km s�1

.

As alluded to above, a common point of confusion is that the halo mass definition is

subject to the assumed value of �, which can vary by a factor of ⇠ 3 depending on the

author. For the spherical collapse definition, � ' 333 at z = 0 (for our fiducial cosmology)

and asymptotes to � = 178 at high redshift (Bryan & Norman 1998). Another common

choice is a fixed � = 200 at all z (often labeled M200m in the literature). Finally, some

authors prefer to define the virial overdensity as 200 times the critical density, which,

according to Equation 4 would mean �(z) = 200⇢c(z)/⇢m(z). Such a mass is commonly

labeled “M200” in the literature. For most purposes (e.g., counting halos), the precise choice

does not matter, as long as one is consistent with the definition of halo mass throughout an

analysis: every halo has the same center, but its outer radius (and mass contained within

that radius) shifts depending on the definition. In what follows, we use the spherical collapse

definition (� = 333 at z = 0) and adhere to the convention of labeling that mass “Mvir”.

Before moving on, we note that it is also possible (and perhaps even preferable) to give

a halo a “mass” label that is directly tied to a physical feature associated with a collapsed

dark matter object rather than simply adopting a �. More, Diemer & Kravtsov (2015) have

advocated the use of a “splash-back” radius , where the density profile shows a sharp break

(this typically occurs at ⇠ 2Rvir). Another common choice is to tag halos based not on a

mass but on Vmax, which is the peak value of the circular velocity Vc(r) =
p

GM(< r)/r

as one steps out from the halo center. For any individual halo, the value of Vmax (& Vvir)

is linked to the internal mass profile or density profile of the system, which is the subject

of the next subsection. As discussed below, the ratio Vmax/Vvir increases as the halo mass

decreases.

1.3.2. Abundance. In principle, the mapping between the initial spectrum of density fluctu-

ations at z ! 1 and the mass spectrum of collapsed (virialized) dark matter halos at later

times could be extremely complicated: as a given scale becomes non-linear, it could a↵ect

the collapse of nearby regions or larger scales. In practice, however, the mass spectrum of

dark matter halos can be modeled remarkably well with a few simple assumptions. The first

of these was taken by Press & Schechter (1974), who assumed that the mass spectrum of col-

lapsed objects could be calculated by extrapolating the overdensity field using linear theory

even into the highly non-linear regime and using a spherical collapse model (Gunn & Gott

1972). In the Press-Schechter model, the dark matter halo mass function – the abundance

of dark matter halos per unit mass per unit volume at redshift z, often written as n(M, z)

– depends only on the rms amplitude of the linear dark matter power spectrum, smoothed

using a spherical tophat filter in real space and extrapolated to redshift z using linear the-

ory. Subsequent work has put this formalism on more rigorous mathematical footing (Bond

8 Bullock • Boylan-Kolchin

With this in mind, Equations 3-6 allow us to self-consistently define “small scales” for

both the linear power spectrum and collapsed objects: M . 1011 M�. As we will discuss,

potential problems associated with galaxies inhabiting halos with Vvir ' 50 km s�1 may

point to a power spectrum that is non-CDM-like at scales rl . 1Mpc.

WE DEFINE “SMALL SCALES” AS THOSE SMALLER THAN:

M ⇡ 1011 M� $ k ⇡ 3Mpc�1
$ rl ⇡ 1Mpc $ Rvir ⇡ 150 kpc $ Vvir ⇡ 50 km s�1

.

As alluded to above, a common point of confusion is that the halo mass definition is

subject to the assumed value of �, which can vary by a factor of ⇠ 3 depending on the

author. For the spherical collapse definition, � ' 333 at z = 0 (for our fiducial cosmology)

and asymptotes to � = 178 at high redshift (Bryan & Norman 1998). Another common

choice is a fixed � = 200 at all z (often labeled M200m in the literature). Finally, some

authors prefer to define the virial overdensity as 200 times the critical density, which,

according to Equation 4 would mean �(z) = 200⇢c(z)/⇢m(z). Such a mass is commonly

labeled “M200” in the literature. For most purposes (e.g., counting halos), the precise choice

does not matter, as long as one is consistent with the definition of halo mass throughout an

analysis: every halo has the same center, but its outer radius (and mass contained within

that radius) shifts depending on the definition. In what follows, we use the spherical collapse

definition (� = 333 at z = 0) and adhere to the convention of labeling that mass “Mvir”.

Before moving on, we note that it is also possible (and perhaps even preferable) to give

a halo a “mass” label that is directly tied to a physical feature associated with a collapsed

dark matter object rather than simply adopting a �. More, Diemer & Kravtsov (2015) have

advocated the use of a “splash-back” radius , where the density profile shows a sharp break

(this typically occurs at ⇠ 2Rvir). Another common choice is to tag halos based not on a

mass but on Vmax, which is the peak value of the circular velocity Vc(r) =
p

GM(< r)/r

as one steps out from the halo center. For any individual halo, the value of Vmax (& Vvir)

is linked to the internal mass profile or density profile of the system, which is the subject

of the next subsection. As discussed below, the ratio Vmax/Vvir increases as the halo mass

decreases.

1.3.2. Abundance. In principle, the mapping between the initial spectrum of density fluctu-

ations at z ! 1 and the mass spectrum of collapsed (virialized) dark matter halos at later

times could be extremely complicated: as a given scale becomes non-linear, it could a↵ect

the collapse of nearby regions or larger scales. In practice, however, the mass spectrum of

dark matter halos can be modeled remarkably well with a few simple assumptions. The first

of these was taken by Press & Schechter (1974), who assumed that the mass spectrum of col-

lapsed objects could be calculated by extrapolating the overdensity field using linear theory

even into the highly non-linear regime and using a spherical collapse model (Gunn & Gott

1972). In the Press-Schechter model, the dark matter halo mass function – the abundance

of dark matter halos per unit mass per unit volume at redshift z, often written as n(M, z)

– depends only on the rms amplitude of the linear dark matter power spectrum, smoothed

using a spherical tophat filter in real space and extrapolated to redshift z using linear the-

ory. Subsequent work has put this formalism on more rigorous mathematical footing (Bond

8 Bullock • Boylan-Kolchin

Figure 4

Steep mass functions. The black solid line shows the z = 0 dark matter halo mass function
(Mhalo = Mvir) for the full population of halos in the universe as approximated by Sheth, Mo &
Tormen (2001). For comparison, the magenta lines show the subhalo mass functions at z = 0
(defined as Mhalo = Msub = Mpeak, see text) at the same redshift for host halos at four
characteristic masses (Mvir = 1012, 1013, 1014, and 1015M�) with units given along the right-hand
axis. Note that the subhalo mass functions are almost self-similar with host mass, roughly shifting
to the right by 10⇥ for every decade increase in host mass. The low-mass slope of subhalo mass
function is similar than the field halo mass function. Both field and subhalo mass functions are
expected to rise steadily to the cuto↵ scale of the power spectrum, which for fiducial CDM
scenarios is ⌧ 1M�.

“flat” region of a galaxy rotation curve. For our “small-scale” mass of Mvir = 1011M�,

typically Vmax ' 1.2Vvir ' 60 km s�1.

1.4. Dark matter substructure

It was only just before the turn of the century that N -body simulations set within a cos-

mological CDM framework were able to robustly resolve the substructure within individual

dark matter halos (Ghigna et al. 1998; Klypin et al. 1999a). It soon became clear that

the dense centers of small halos are able to survive the hierarchical merging process: dark

matter halos should be filled with substructure. Indeed, subhalo counts are nearly self-

similar with host halo mass. This was seen as welcome news for cluster-mass halos, as the

substructure could be easily identified with cluster galaxies. However, as we will discuss

in the next section, the fact that Milky-Way-size halos are filled with substructure is less

clearly consistent with what we see around the Galaxy.

Quantifying subhalo counts, however, is not so straightforward. Counting by mass

is tricky because the definition of “mass” for an extended distribution orbiting within a

12 Bullock • Boylan-Kolchin
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Figure 1. Left panels show halo mass and vmax histories for a typical infalling halo; right panels show halo mass, vmax, and concentration histories for the same halo
as a function of the distance to its eventual host (R), in units of the host virial radius at accretion (Racc,host). Peak mass and peak vmax occur at different times and
distances. Peak vmax occurs first, when a merging satellite halo on its first pass through the infalling halo’s center creates a temporary spike in concentration as well as
vmax. This event is marked by a red dashed line in all plots. Peak mass occurs second, and is due to slow, steady accretion; this is marked by the blue dot-dashed line
in all plots. However, the infalling halo reaches peak mass well outside of the virial radius of its eventual host (∼2 Racc,host, in this example). Steady tidal stripping
leads to a slow decline in both mass and vmax; rapid mass loss does not occur until the infalling halo is well inside its host. Other > 1:10 mergers are marked by
gray triangles, specifically at the time of first turnaround of the merging satellite. These mergers all result in spikes in concentration and vmax, but the effect is more
pronounced for more massive mergers. All quantities are calculated using the Rockstar halo finder on the Bolshoi simulation.
(A color version of this figure is available in the online journal.)

coincides with the virial radius of the infalling halo.8 To better
compare clustercentric distances across different host masses,
we normalize all distances by the host halo’s virial radius,
measured at the time the satellite last entered the host; i.e., letting
tacc be the most recent time that the satellite became accreted, we
normalize by Racc,host = Rvir,host(tacc). We have checked that our
results do not change appreciably if we normalize by the host’s
virial radius at a different time (e.g., at the time the infalling
halo reached peak mass or vmax).

We first present mass, vmax, and concentration histories for a
typical infalling halo in Section 3.1 in order to motivate the anal-
ysis that follows. We discuss results for the radius at which satel-
lite halos reach peak vmax (Rpeak,vmax) in Section 3.2 and identify
the connection to the last > 1:5 merger in Section 3.3. We then
compare Rpeak,vmax to the radius of peak mass (Rpeak,mass) in
Section 3.4. We examine the percentage of satellites which reach
peak mass and vmax after “backsplash” (i.e., after passing tem-
porarily through the virial radius of a larger halo) in Section 3.5.
Finally, we compare results across different halo finders and
simulations in Section 3.6.

8 More generally, this ratio applies for any two spheres with the same average
density. This means that for any given spherical overdensity ∆, the peak mass
M∆ for an infalling halo will happen near 3√3 times the eventual host halo’s
radius measured at the same overdensity (i.e., R∆,host).

3.1. Example

We show the halo mass, vmax, merging, and concentration
histories for a typical infalling halo in Figure 1. As time
proceeds, the halo has monotonic growth in mass, but its vmax
growth is marked by temporary spikes. These spikes in vmax
often correspond to mergers (gray triangles in Figure 1) as well
as to spikes in concentration, suggesting that a merging satellite
passing by the halo’s center is causing a temporary boost in
central density. The vmax peaks are generally larger for larger
merger ratios, such as the major 1:3 merger at z = 1.78, as
compared to the mostly ∼1:10 events at higher redshifts for
this halo. This halo’s peak vmax is set during a ∼1:5 merger
at z = 1.17, which occurs at ∼3 times the virial radius of its
eventual host. After this peak, vmax declines immediately by
12%. For this halo, peak vmax does not correspond to peak mass.
Instead, its mass continues to grow through smooth accretion
until the halo reaches ∼2 times the virial radius of its eventual
host. At this radius, tidal forces from the host are strong enough
to halt accretion, even though severe stripping does not occur
until after the infalling halo passes through the virial radius of
its host.

As shown in later sections, several aspects of this exam-
ple apply to the halo population as a whole. Peak vmax tends
to occur well outside the virial radius of the eventual host
(Section 3.2), and is very often coincident with a > 1:5 merging

3

Mpeak → maximum virial mass  
              over accretion history 

Vpeak → maximum Vmax over 
             accretion history 

Both occur well outside virial 
radius of eventual host.

Behroozi+ (2014)



Dark Matter — Galaxy connection
0. Scale-dependent star formation efficiency

Figure 5

The thick black line shows the global dark matter mass function. The dotted line is shifted to the
left by the cosmic baryon fraction for each halo Mvir ! fbMvir. This is compared to the observed
stellar mass function of galaxies from Bernardi et al. (2013, magenta stars) and Wright et al.
(2017; cyan squares). The shaded bands demonstrate a range of faint-end slopes ↵g = �1.62 to
�1.32. This range of power laws will produce dramatic di↵erences at the scales of the classical
Milky Way satellites (M? ' 105�7M�). Pushing large sky surveys down below 106M� in stellar
mass, where the di↵erences between the power law range shown would exceed a factor of ten,
would provide a powerful constraint on our understanding of the low-mass behavior. Until then,
this mass regime can only be explored with without large completeness corrections in vicinity of
the Milky Way.

observed stellar mass function of galaxies. The di↵erence grows dramatically at both large

and small masses, with a maximum e�ciency of ✏? ' 0.2 at the stellar mass scale of the

Milky Way (M? ⇡ 1010.75M�). This basic mismatch in shape has been understood since

the earliest galaxy formation models set within the dark matter paradigm (White & Rees

1978) and is generally recognized as one of the primary constraints on feedback-regulated

galaxy formation (White & Frenk 1991; Benson et al. 2003; Somerville & Davé 2015).

At the small masses that most concern this review, dark matter halo counts follow

dn/dM / M
↵ with a steep slope ↵dm ' �1.9 compared to the observed stellar mass

function slope of ↵g = �1.47 (Baldry et al. 2012, which is consistent with the updated

GAMA results shown in Figure 5). Current surveys that cover enough sky to provide a

global field stellar mass function reach a completeness limit of M? ⇡ 107.5M�. At this

mass, galaxy counts are more than two orders of magnitude below the naive baryonic

mass function fbMvir. The shaded band illustrates how the stellar mass function would

extrapolate to the faint regime spanning a range of faint-end slopes ↵ that are marginally

consistent with observations at the completeness limit.

One clear implication of this comparison is that galaxy formation e�ciency (✏?) must

vary in a non-linear way as a function of Mvir (at least if ⇤CDM is the correct underlying

model). Perhaps the cleanest way to illustrate this is adopt the simple assumption of

Abundance Matching (AM): that galaxies and dark matter halos are related in a one-to-

14 Bullock • Boylan-Kolchin
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Astrophysical mechanisms that inhibit star formation are mass-dependent.

— AGN outflows

— SNe, stellar outflows 
— Reionisation 
— Satellite-specific processes

Simulating these is hard due to both large 
uncertainties and high dynamic range
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Figure 14. The TNG galaxy stellar mass functions after the Epoch of the Reionization, from z ⇠ 4 to today. Unless otherwise specified, we show results
from the simulations by accounting for all the stellar mass within twice the stellar half mass radius (thick colored curves from z = 0.5 to 4). At z = 0, we
emphasize the importance of the galaxy mass definition by providing the predictions from TNG300 for different aperture measurements: 30 kpc (for all runs,
thick curves), 10kpc (orange dotted), 100 kpc (orange dashed) and twice the stellar half mass radius (orange crosses). At z > 0, we report in light orange the
rTNG300 mass function (within twice the stellar half mass radius), for reference. A selection of observational data points is included for comparison in grey
symbols, all converted to Chabrier IMF (Baldry et al. 2008, 2012; Bernardi et al. 2013; D’Souza et al. 2015; Pérez-González et al. 2008; Mortlock et al. 2011;
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Statistical approach: assume galaxy formation physics depends on only few properties of host 
halo. Match observed galaxy abundances (and clustering). 
— simplest model: only mass of host halo matters

Figure 6

Abundance matching relation from Behroozi et al. (in preparation). Gray (magenta) shows a
scatter of 0.2 (0.5) dex about the median relation. The dashed line is power-law extrapolation
below the regime where large sky surveys are currently complete. The cyan band shows how the
extrapolation would change as the faint-end slope of the galaxy stellar mass function (↵) is varied
over the same range illustrated by the shaded gray band in Figure 5. Note that the enumeration of
M? = 105M� galaxies could provide a strong discriminator on faint-end slope, as the ±0.15 range
in ↵ shown maps to an order of magnitude di↵erence in the halo mass associated with this galaxy
stellar mass and a corresponding factor of ⇠ 10 shift in the galaxy/halo counts shown in Figure 4.

one way, with the most massive galaxies inhabiting the most massive dark matter halos

(Frenk et al. 1988; Kravtsov et al. 2004; Conroy, Wechsler & Kravtsov 2006; Moster et al.

2010; Behroozi, Wechsler & Conroy 2013). The results of such an exercise are presented in

Figure 6 (as derived by Behroozi et al., in preparation). The gray band shows the median

M? �Mvir relation with an assumed 0.2 dex of scatter in M? at fixed Mvir. The magenta

band expands the scatter to 0.5 dex . This relation is truncated near the completeness

limit in Baldry et al. (2012). The central dashed line in Figure 6 shows the median relation

that comes from extrapolating the Baldry et al. (2012) mass function with their best-fit

↵g = �1.47 down to the stellar mass regime of Local Group dwarfs. The cyan band

brackets the range for the two other faint-end slopes shown in Figure 5: ↵g = �1.62 and

�1.32.
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Figure 6. Mean halo occupation functions of the best-fitting models for
different luminosity-threshold samples.

we jointly fit the projected 2PCF wp and the redshift-space 2PCFs
ξ 0,2,4, while Zehavi et al. (2011) only fit wp. Accounting for these
differences, our results are in good agreement with those in Zehavi
et al. (2011). We note that the uncertainties in many HOD param-
eters (and the derived satellite fraction) from the modelling in this
paper appear to be larger than those in Zehavi et al. (2011) from
modelling wp only. This can be attributed to the differences in the
models. The accuracy of the measured small-scale data points ex-
ceed that of the analytic HOD model used in Zehavi et al. (2011),
which may be the reason of their large χ2/dof (2–3 for some cases).
As a consequence, the uncertainties in the HOD parameters can be
artificially underestimated. The simulation-based model used in this
paper is a more accurate model, leading to good values of χ2/dof
and improved error estimates in the parameters.

We also perform wp-only fit with the simulation-based model
and compare to the results from fitting both wp and ξ 0,2,4. We find

that redshift-space 2PCFs help tighten the constraints on the HOD
parameters. As an example, we show in Fig. 7 the comparison of the
constraints on Mmin and σ log M from fitting wp only (blue contours)
and jointly fitting wp and ξ 0,2,4 (red contours). We set a prior of
σ log M < 1.5 when fitting the data to have a reasonable value of the
scatter. Clearly, a substantial improvement with the redshift-space
2PCFs is to narrow down the range of σ log M, especially for less
luminous samples (with the Mr < −18 as an exception, which has
a tighter Mmin).

Even though redshift-space 2PCFs help tighten the constraints
on σ log M, we note that for faint galaxy samples the cutoff profile in
the mean central occupation function is still not well constrained,
as indicated by the large errors (Table 2 and Fig. 7). It is consistent
with a sharp cutoff at Mmin, and in Fig. 6 we choose to plot the best-
fitting models with σ log M ≃ 0 for these samples. The constraints
on Mmin and σ log M mainly come from the galaxy bias (large scale
2PCF amplitude) and the galaxy number density. The galaxy bias
is mainly determined by haloes around Mmin. For faint samples,
Mmin is in the range that halo bias is insensitive to halo mass.
As a consequence, the galaxy bias is insensitive to the way of
populating galaxies into haloes of different masses around Mmin,
i.e. insensitive to the change in σ log M. A change in σ log M can be
easily compensated by a slight change in Mmin to maintain the galaxy
number density. Therefore, the cutoff profiles for faint samples are
not well constrained. Conversely, σ log M is much better constrained
for the luminous samples as a result of the steep dependence of halo
bias and halo mass function on halo mass towards the high-mass
end.

Fig. 8 shows the dependence of the characteristic mass scales
(Mmin for central galaxies and M1 for satellite galaxies) and the
satellite fraction fsat on the sample number density ng. The depen-
dence of any of those parameters on ng roughly follows a power-
law form. As pointed out in Guo et al. (2014), the dependence of
Mmin on the number density largely comes from the nearly power-
law form of the halo mass function over a large mass range. The
mass Mmin is mostly determined by matching the halo number den-
sity with the galaxy number density, modulated by σ log M. There
is a trend that the ratio M1/Mmin decreases as the sample number
density decreases (or the sample luminosity increases), consistent

Figure 7. Comparisons between the constraints on the HOD parameters Mmin and σ log M from fitting wp (blue contours) and jointly fitting wp and ξ0,2,4 (red
contours).
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1. Missing satellites / Void phenomenon

Figure 7

The Missing Satellites Problem: Predicted ⇤CDM substructure (left) vs. known Milky Way
satellites (right). The image on the left shows the ⇤CDM dark matter distribution within a sphere
of radius 250 kpc around the center of a Milky-Way size dark matter halo (simulation by V.
Robles and T. Kelley in collaboration with the authors). The image on the right (by M. Pawlowski
in collaboration with the authors) shows the current census of Milky Way satellite galaxies, with
galaxies discovered since 2015 in red. The Galactic disk is represented by a circle of radius 15 kpc
at the center and the outer sphere has a radius of 250 kpc. The 11 brightest (classical) Milky Way
satellites are labeled by name. Sizes of the symbols are not to scale but are rather proportional to
the log of each satellite galaxy’s stellar mass. Currently, there are ⇠ 50 satellite galaxies of the
Milky Way compared to thousands of predicted subhalos with Mpeak & 107 M�.

see, e.g., Rees & Ostriker 1977). According to Figure 6, these physical e↵ects are likely to

become dominant in the regime of ultra-faint galaxies M? . 105M�.

The question then becomes: can we simply adopt the abundance-matching relation

derived from field galaxies to “solve” the Missing Satellites Problem down to the scale of

the classical MW satellites (i.e., Mvir ' 1010M� $ M? ' 106M�)? Figure 8 (modified from

Garrison-Kimmel et al. 2017a) shows that the answer is likely “yes.” Shown in magenta is

the cumulative count of Milky Way satellite galaxies within 300 kpc of the Galaxy plotted

down to the stellar mass completeness limit within that volume. The shaded band shows the

68% range predicted stellar mass functions from the dark-matter-only ELVIS simulations

(Garrison-Kimmel et al. 2014) combined with the AM relation shown in Figure 6 with zero

scatter. The agreement is not perfect, but there is no over-prediction. The dashed lines show

how the predicted satellite stellar mass functions would change for di↵erent assumed (field

galaxy) faint-end slopes in the calculating the AM relation. An important avenue going

forward will be to push these comparisons down to the ultra-faint regime, where strong

baryonic feedback e↵ects are expected to begin shutting down galaxy formation altogether.

2.2. Cusp, Cores, and Excess Mass

As discussed in Section 1, ⇤CDM simulations that include only dark matter predict that

dark matter halos should have density profiles that rise steeply at small radius ⇢(r) / r
�� ,

with � ' 0.8� 1.4 over the radii of interest for small galaxies (Navarro et al. 2010). This is

20 Bullock • Boylan-Kolchin
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FIG. 1.— Slice through the galaxy population created from the halos within the 96 h−1 Mpc simulation. The depth of the slice is 6 h−1 Mpc. The point size
scales with the luminosity of the galaxies. r-band magnitudes are as follows: blue = −14 and −15; green = −16 and −17, red = −18 and −19, orange are all galaxies
−20 and brighter.

Figure 2 compares the void luminosity function of our HOD
model to the Hoyle et al. (2005) measurements. Our model
is in excellent agreement with the data, not only reproducing
the overall abundance of void galaxies but also the decrease
in the value of M∗ in the void luminosity function relative to
the overall luminosity function.
Interestingly, we find some void galaxies with magnitudes

as bright asMr = −21.5, just as measured in Hoyle et al. These
objects are not scattered into void regions due to redshift
space distortions, but are in intrinsically low-density regions
as defined by the Mr < −20.5 galaxies. The minimum mass
scale for Mr < −21.5 galaxies is ∼ 1.8×1013 h−1M⊙, which
are never found in δ ! −0.6 regions in the dark matter dis-
tribution. When using the dark matter particles to obtain the
local density around each galaxy and recalculate the void lu-
minosity function, there are no void galaxies this bright. Thus,
bright void galaxies are due to stochastic biasing of L∗ galax-
ies, both from Poisson fluctuations in the number of halos and
fluctuations in the number of L > L∗ galaxies per halo. This
creates a few regions in which the dark matter density is above
the density threshold but the galaxy density is below it.

3.3. Nearest Neighbor Statistics
P01 used nearest neighbor statistics to probe the relative

distribution of “ordinary” galaxies (Mr ≤ −16) to dwarf galax-
ies (Mr > −16). If dwarf galaxies preferentially occupy void

regions relative to their brighter counterparts, their distribu-
tion of nearest neighbors will show a significant tail out to
large neighbor distances Rnb. To circumvent the problem of
different galaxy samples having different mean space densi-
ties, for each test object the nearest neighbor in the control
sample is found. This distribution is compared to the distri-
bution of Rnb of the control sample to itself. P01 found that
the distribution of nearest neighbors for test and control ob-
jects are essentially the same, indicating that dwarfs avoid the
voids defined by the ordinary objects.
In Figure 3 we present several examples of the cumula-

tive distributions of Rnb taken from L96. Here we have set
our control sample to be Mr = [−16,−18), and our test sam-
ple are galaxies with Mr = [−14,−16). The control and test
samples are substantially different in terms of their space den-
sities, but are not too dissimilar in the halo masses that they
probe. To test any systematics due to these choices we have
an additional sample of “bright” objects containing all galax-
ies Mr < −18. The largest sample in P01 is roughly 1000
(h−1Mpc)3, so we have broken our mock galaxy distribution
into 93 equal-volume cubes of 1225 (h−1Mpc)3 to test for cos-
mic variance in this statistic. The bottom right panel shows
the results from the full simulation. We define Rtc as the dis-
tance to the nearest control galaxy for each test galaxy, while
Rbc is the distance to the nearest control galaxy for each bright
galaxy, and Rcc is the distance for each control galaxy to the

Tinker & Conroy (2008)

Many subhalos (~108Msun) expected in MW-sized halos.  
Many small (~109-10Msun) halos expected in voids. 

Where are the corresponding dwarf galaxies?

If N( halo mass | environment ) is large, why is N( light | environment ) small?
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FIG. 2.— Comparison between the luminosity function of void galaxies
measured by Hoyle et al. (2005) and predicted by our HODmodel. The HOD
measurement, shown with the open squares, is a weighted average of results
from the 96 h−1 Mpc and 192 h−1Mpc simulations (noting that all points at
Mr > −17 are from the 96 h−1Mpc simulation). Errors are estimated by jack-
knife sampling of each simulation into octants. The solid line is the Hoyle
et al. data, with the shaded region representing their error bars. For compar-
ison, the full luminosity function of all galaxies from Blanton et al. (2005) is
shown with the dotted curve.

nearest galaxy within the control sample.
The shaded region in each panel of Figure 3 approximates

the results from the largest dwarf sample from P01 (his Fig-
ure 4, top set of curves). The upper limit of the shaded region
is set by f (< Rtc) while the lower edge is f (< Rcc). P01 de-
termined the ratio of mean Rnb values to be ⟨Rtc⟩/⟨Rcc⟩ = 1.1.
This is nearly identical to the overall value of 1.06 obtained
from the L96 simulation. The scatter in this statistic is quite
large, with a variance in mean distance ratios over the 93 sub-
samples of 0.23. In many examples in Figure 3, f (< Rcc)
extends to distances significantly beyond f (< Rtc). Compar-
ing the Rtc distributions to the nearest neighbor statistics for
the bright objects to the test sample, Rbc, yields similar re-
sults. The mean distance ratio is 1.19 with a scatter of 0.55,
owing to the lower number density of brighter objects. While
the agreement between model and data are encouraging, it is
likely fortuitous given the large cosmic scatter in the P01 mea-
surements. However, we conclude that the prediction of the
model supports the picture that dwarf galaxies and brighter
galaxies have similar spatial distributions in low-density re-
gions. The slight difference in nearest neighbor distributions
between dwarf and regular galaxies is also in agreement with
the observational results of Lee et al. (2000).

3.4. Void Probabilities as a Function of Luminosity
The void probability function (VPF, denoted P0(r)) is

defined as the probability that a randomly placed sphere
of radius r contains no galaxies. In Tinker et al. (2007a)
we measured the VPF for galaxies as faint as Mr = −19
from Data Release Four of the Sloan Digital Sky Survey
(Adelman-McCarthy et al. 2006). Fainter samples were not

used because cosmic variance errors become large and galaxy
clustering measurements are not available at Mr > −18. In
Figure 4 we present newmeasurements of the VPF fromDR6.
The measurements are in magnitude bins, 1 magnitude wide
(referenced by their lower limit). We follow the procedures
outlined in detail in Tinker et al. (2007a) for both measure-
ments and for comparing the HOD predictions to the data.
We use the HOD mocks to estimate error bars on the data,
also discussed in Tinker et al. (2007a). The increased sky
coverage of DR6 attenuates (but does not eliminate) the cos-
mic variance considerations for fainter samples. Though we
are not able to probe void statistics for dwarf galaxies (in our
definition), we are able to make VPF measurements down to
Mr = −17, a two magnitude improvement on our previous re-
sults. We use these data to test the robustness of our HOD
model and to extend the conclusions of Tinker et al. (2007a)
discussed in §1 to lower luminosities.
Rather than presenting VPFs for each luminosity bin, we

consolidate the results by presenting void probabilities at a
fixed distance scale as a function of luminosity. The open
circles in Figure 4 show P0(r) at the mean intergalactic sep-
aration for each magnitude bin, r = lg ≡ n̄−1/3g . Squares and
triangles represent P0(r) at r = 1.3lg and r = 1.6lg, respec-
tively. At luminosities below L∗, the void probability at
any multiple of lg is essentially independent of luminosity.
Brighter galaxies have a lower probability of finding a void,
thus, in the scaled distance r/lg, the brightest galaxies have
the smallest voids. This has also been seen in the 2dFGRS
data (von Benda-Beckmann & Müller 2008). This is partially
a result of the fact that brighter galaxies have fewer satel-
lite galaxies (a higher satellite fraction results in an increase
in Mmin in order to match the number density of the galaxy
sample), but it is mainly due to the fact that lg for samples
on the exponential tail of the of the luminosity function in-
creases much more rapidly than the bias of those galaxies.
ForMr < −22 galaxies, lg = 33 h−1Mpc.
The HOD model predictions are shown in Figure 4 for

all three simulations. The difference in the amplitude of
P0(r) between L96 and the larger simulations is consistent
with cosmic variance due to the small volume. Although the
model is not calibrated on clustering measurements as done in
Tinker et al. (2007a), it matches the observed void probabili-
ties as a function of luminosity and scale. The constraints on
Mmin are driven primarily by n̄g rather than two-point cluster-
ing, thereforeMmin and the resulting VPF are similar between
Tinker et al. (2007a) and the model presented here.
Although we cannot probe the VPF for galaxies as faint as

Mr = −14 the success of our model in matching P0(r) down to
Mr = −17, the void luminosity function down to Mr = −14.5,
and nearest neighbor statistics down toMr = −14 strongly sug-
gest that our extrapolation of the HOD below halo masses of
1011 h−1M⊙ is robust, and the resulting galaxy distribution
represents a complete picture of the structure within under-
dense regions.

3.5. The galaxy structure within voids
In the VPF results of Figure 4, P0(1.6lg) ∼ constant for

−17 ≥Mr ≥ −20 galaxies in both the model and the data. In
this magnitude range, voids are self-similar. At fainter mag-
nitudes, the void probability monotonically increases with
decreasing brightness. This implies that voids are not self-
similar for dwarf galaxies, and that the structure of the comic
web itself plays a role in the distribution of dwarfs in voids

Tinker & Conroy (2008)

Explanation within CDM statistical framework that matches observed luminosity function: 
Because observed (M/L) becomes very large for faint galaxies in *any* environment. 

Simple mass-only model says: 
Galaxy environment is `inherited’ from host. Together with large M/L (originating from baryonic 
feedback), explains both `missing’ satellites and void phenomenon.

Figure 8

“Solving” the Missing Satellites Problem with abundance matching. The cumulative count of
dwarf galaxies around the Milky Way (magenta) plotted down to completeness limits from
Garrison-Kimmel et al. (2017a). The gray shaded region shows the predicted stellar mass function
from the dark-matter-only ELVIS simulations (Garrison-Kimmel et al. 2014) combined with the
fiducial AM relation shown in Figure 6, assuming zero scatter. If the faint end slope of the stellar
mass function is shallower (dashed) or steeper (dotted), the predicted abundance of satellites with
M? > 104 M� throughout the Milky Way’s virial volume di↵ers by a factor of 10. Local Group
counts can therefore serve as strong constraints on galaxy formation models.

in contrast to many (though not all) low-mass dark-matter-dominated galaxies with well-

measured rotation curves, which prefer fits with constant-density cores (� ⇡ 0 � 0.5; e.g.,

McGaugh, Rubin & de Blok 2001; Marchesini et al. 2002; Simon et al. 2005; de Blok et al.

2008; Kuzio de Naray, McGaugh & de Blok 2008). A related issue is that fiducial ⇤CDM

simulations predict more dark matter in the central regions of galaxies than is measured

for the galaxies that they should host according to AM. This “central density problem” is

an issue of normalization and exists independent of the precise slope of the central density

profile (Alam, Bullock & Weinberg 2002; Oman et al. 2015). While these problems are

in principle distinct issues, as the second refers to a tension in total cumulative mass and

the first is an issue with the derivative, it is likely that they point to a common tension.

Dark-matter-only ⇤CDM halos are too dense and too cuspy in their centers compared to

many observed galaxies.

Figure 9 summarizes the basic problem. Shown as a dashed line is the typical circular

velocity curve predicted for an NFW ⇤CDM dark matter halo with Vmax ⇡ 40km s�1

compared to the observed rotation curves for two galaxies with the same asymptotic velocity

from Oh et al. (2015). The observed rotation curves rise much more slowly than the ⇤CDM

expectation, reflecting core densities that are lower and more core-like than the fiducial
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Figure 9

The Cusp-Core problem. The dashed line shows the naive ⇤CDM expectation (NFW, from
dark-matter-only simulations) for a typical rotation curve of a Vmax ⇡ 40 km s�1 galaxy. This
rotation curve rises quickly, reflecting a central density profile that rises as a cusp with ⇢ / 1/r.
The data points show the rotation curves of two example galaxies of this size from the LITTLE
THINGS survey (Oh et al. 2015)), which are more slowly rising and better fit by a density profile
with a constant density core (Burkert 1995, cyan line).

prediction.

2.3. Too-Big-To-Fail

As discussed above, a straightforward and natural solution to the missing satellites problem

within ⇤CDM is to assign the known Milky Way satellites to the largest dark matter

subhalos (where largest is in terms of either present-day mass or peak mass) and attribute

the lack of observed galaxies in in the remaining smaller subhalos to galaxy formation

physics. As pointed out by Boylan-Kolchin, Bullock & Kaplinghat (2011), this solution

makes a testable prediction: the inferred central masses of Milky Way satellites should be

consistent with the central masses of the most massive subhalos in ⇤CDM simulations of

Milky Way-mass halos. Their comparison of observed central masses to ⇤CDM predictions

from the Aquarius (Springel et al. 2008) and Via Lactea II (Diemand et al. 2008) simulations

revealed that the most massive ⇤CDM subhalos were systematically too centrally dense to

host the bright Milky Way satellites (Boylan-Kolchin, Bullock & Kaplinghat 2011, 2012).

22 Bullock • Boylan-Kolchin

Inner regions of low mass, DM-dominated galaxies are 
less dense and less cuspy than CDM-only predictions.

Inferences drawn from rotation curve fitting / 
velocity dispersion modelling. 
See, e.g., Pineda+ (2017) and Genina+ (2018) 
for caveats reg systematics.
Rotation curve fitting and its attraction to cores 13

Figure 7. Mean H ↵ velocity residuals hVcir � Vkini (top), and
hVcir � Vlsi (bottom) as a function of distance (spatial resolution)
and inclination for all galaxies and snapshots. Some markers are
slightly shifted horizontally to make the plot more readable. The
residual increases as the spatial sampling gets coarser, reaching
as much as ⇠5 km s�1. The rotation curves from the kinemetry
analysis exhibit larger residuals in galaxies that are viewed more
face-on. In the long-slit case, the largest residual occurs in discs
inclined at 75�.

often exhibit prominent shape distortions that are not seen
at other inclinations.

We find the same trend with spatial resolution but not
with inclination in the mock long-slit data. In this case, the
rotation curves of galaxies viewed at an inclination of 75�

exhibit the most underestimated circular velocities, followed
by galaxies at 15�; for other inclinations, the long-slit rota-
tion curves are e↵ectively independent of inclination (see
Fig. 7). The long-slit rotation curves are a bit noisy and ex-
hibit more scatter than those from the 2D velocity maps,
mainly at low inclinations and high spatial samplings (small
distances). Nevertheless, the average di↵erence hVcir � Vlsi is
comparable to the previous case. The only exception is G1
viewed at an inclination of 75�, for which the average ve-
locity underestimation at 80 Mpc increases to ⇠ 11 km s�1

because of the galaxy’s lack of symmetry during the second
half of the simulation.

4.3 Rotation curve fitting

In Fig. 8, we compare the reduced �2

⌫ of the best-fitting
NFW and ISO models for the various types of rotation
curves for the D2 simulation placed at 10Mpc. This is a
good example of the general trends in the whole sample, so
we use it to introduce our main findings before going into a
more detailed analysis.

Points that lie below the one-to-one line in Fig. 8, rep-
resent better agreement of the data with the NFW model,
and points above the diagonal indicate that the ISO model
provides a better description of the data. We see that the
NFW profile fits the theoretical Vdm and Vtot curves much

Figure 8. Distribution of �2
⌫ obtained by fitting the NFW and

ISO models to the various types of rotation curves for the Dwarf2
simulation placed at 10 Mpc. The shapes, colours, and sizes of the
markers are coded according to the specific rotation curve used,
as detailed in the legend. Background semi-transparent symbols
correspond to the results for individual snapshots, the solid sym-
bols in the front denote the centroids of the corresponding clouds
of points, and the error bars represent the 1-� scatter in the hor-
izontal and vertical directions. The black diagonal line represents
equality between the goodness of the fits. For this simulation,
the theoretical rotation curves Vdm and Vtot are better fit by the
cuspy NFW model. However, the theoretical rotation curve Vcir

is better fit by the ISO model because pressure support causes
Vcir to be less than Vtot in the central ⇠ 1 kpc. The mock ro-
tation curves obtained using kinemetry are generally better fit
with the ISO model, especially when the galaxies are viewed at
inclinations of 45� or greater. These results demonstrate that ro-
tation curve fitting can indicate the presence of a core when the
true DM profile is cuspy.

better, as expected because by construction the central po-
tential of the galaxy is dominated by the DM, which obeys
an NFW profile. The results from fitting Vtot are somewhat
closer to the line of equality between models than those from
Vdm because of the e↵ect of the baryonic contribution to the
rotation curve. Surprisingly, Vcir is better fit by the ISO
model than by the NFW model. The fits to the mock rota-
tion curves tend to favour the ISO model, especially when
the galaxies are viewed at high inclinations.

We now discuss the results for all of the galaxies and
snapshots. In Fig. 9 and Table 2, we show the fraction of
cases in which one of the models is preferred over the other
for each type of circular velocity profile.3 We estimate a

3 We remind the reader that the theoretical rotation curves (Vdm,
Vtot, and Vcir) are resampled to the same positions of the mock
observations; consequently, the results depend on the assumed
distance. Also recall that we observe the curves at a rate of two
points per seeing. So, at a distance of 80 Mpc, the spatial resolu-

MNRAS 000, 1–28 (2016)

Pineda+ (2017)
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Figure 13

The impact of baryonic feedback on the inner profiles of dark matter halos. Plotted is the inner
dark matter density slope ↵ at r = 0.015Rvir as a function of M?/Mvir for simulated galaxies at z
= 0. Larger values of ↵ ⇡ 0 imply core profiles, while lower values of ↵ . 0.8 imply cusps. The
shaded gray band shows the expected range of dark matter profile slopes for NFW profiles as
derived from dark-matter-only simulations (including concentration scatter). The filled magenta
stars and shaded purple band (to guide the eye) show the predicted inner density slopes from the
NIHAO cosmological hydrodynamic simulations by Tollet et al. (2016). The cyan stars are a
similar prediction from an entirely di↵erent suite of simulations from the FIRE-2 simulations
(Fitts et al. 2016; Hopkins et al. 2017, Chan et al., in preparation). Note that at dark matter core
formation peaks in e�ciency at M?/Mvir ⇡ 0.005, in the regime of the brightest dwarfs. Both
simulations find that for M?/Mvir . 10�4, the impact of baryonic feedback is negligible. This
critical ratio below which core formation via stellar feedback is di�cult corresponds to the regime
of classical dwarfs and ultra-faint dwarfs.

the mass in stars formed (Governato et al. 2012; Di Cintio et al. 2014). If galaxies form

enough stars, there will be enough supernovae energy to redistribute dark matter and create

significant cores. If too many baryons end up in stars, however, the excess central mass

can compensate and drag dark matter back in. At the other extreme, if too few stars are

formed, there will not be enough energy in supernovae to alter halo density structure and

the resultant dark matter distribution will resemble dark-matter-only simulations. While

the possible importance of supernova-driven blowouts for the central dark matter structure

of dwarf galaxies was already appreciated by Navarro, Eke & Frenk (1996) and Gnedin &

Zhao (2002), an important recent development is the understanding that even low-level star

formation over an extended period can drive gravitational potential fluctuations that lead

to dark matter core formation.

This general behavior is illustrated in Figure 13, which shows the impact of baryonic

28 Bullock • Boylan-Kolchin

If observational systematics are under control and numerical star-formation / feedback 
prescriptions can be trusted for low-mass systems, then cusp-core problem is not solved by 
baryonic feedback for log(M*/Mhalo) <~ -4.
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Figure 10

The Too-Big-to-Fail Problem. Left: Data points show the circular velocities of classical Milky
Way satellite galaxies with M? ' 105�7M� measured at their half-light radii r1/2. The magenta
lines show the circular velocity curves of subhalos from one of the (dark matter only) Aquarius
simulations. These are specifically the subhalos of a Milky Way-size host that have peak
maximum circular velocities Vmax > 30 km s�1 at some point in their histories. Halos that are this
massive are likely resistant to strong star formation suppression by reionization and thus naively
too big to have failed to form stars (modified from Boylan-Kolchin, Bullock & Kaplinghat 2012).
The existence of a large population of such satellites with greater central masses than any of the
Milky Way’s dwarf spheroidals is the original Too-Big-to-Fail problem. Right: The same problem
– a mismatch between central masses of simulated dark matter systems and observed galaxies –
persists for field dwarfs (magenta points), indicating it is not a satellite-specific process (modified
from Papastergis & Ponomareva 2017). The field galaxies shown all have stellar masses in the
range 5.75  log10(M?/M�)  7.5. The gray curves are predictions for ⇤CDM halos from the
fully self-consistent hydrodynamic simulations of Fitts et al. (2016) that span the same stellar
mass range in the simulations as the observed galaxies.

While there are subhalos with central masses comparable to the Milky Way satellites, these

subhalos were never among the ⇠ 10 most massive (Figure 10). Why would galaxies fail

to form in the most massive subhalos, yet form in dark matter satellites of lower mass?

The most massive satellites should be “too big to fail” at forming galaxies if the lower-mass

satellites are capable of doing so (thus the origin of the name of this problem). In short,

while the number of massive subhalos in dark-matter-only simulations matches the number

of classical dwarfs observed (see Figure 8), the central densities of these simulated dwarfs

are higher than the central densities observed in the real galaxies (see Figure 10).

While too-big-to-fail was originally identified for satellites of the Milky Way, it was

subsequently found to exist in Andromeda (Tollerud, Boylan-Kolchin & Bullock 2014) and

field galaxies in the Local Group (those outside the virial radius of the Milky Way and

M31; Kirby et al. 2014). Similar discrepancies were also pointed out for more isolated low-

mass galaxies, first based on HI rotation curve data (Ferrero et al. 2012) and subsequently

using velocity width measurements (Papastergis et al. 2015; Papastergis & Shankar 2016).

This version of too-big-to-fail in the field is also manifested in the velocity function of

field galaxies4 (Zavala et al. 2009; Klypin et al. 2015; Trujillo-Gomez et al. 2016; Schneider

4We note that the mismatch between the observed and predicted velocity function can also be
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Caveats: (Jiang & van den Bosch 2015) 
— multiple formulations with different severity 
— each suffers from look-elsewhere and/or  
     ignores observational systematics 
— severity depends on statistic used, sample  
     size of simulation suite, assumed MW mass 
     and cosmological parameters

Authors’ new formulation gives 
MW-consistency of 1.4% for 
subhalos with Vmax > 15km/s.

14 Jiang & van den Bosch

Figure 8. Cumulative Γmax distributions for different halo masses, in the WMAP7 cosmology (left-hand panel), and the Planck cosmology
(middle panel). The MW-consistent regime (Γmax < 1) is highlighted in red. The right-hand panel shows the subhalo rmax–Vmax relations
for a host halo massM0 = 1012.0h−1M⊙ in the WMAP7 and Planck cosmologies. The circles (WMAP7) and triangles (Planck) correspond
to a random subsample of model realizations, while the solid and dashed lines indicate the corresponding median relations. The red shaded
band indicates the region occupied by MW dSphs. The top and side panels plot the Vmax and rmax distributions for model subhaloes
with Vmax > 18 km s−1. Note that subhaloes are expected to be significantly denser (i.e., smaller rmax) in the Planck cosmology.

this would have raised a similar concern of being inconsistent
with ΛCDM predictions. Yet, such a gap does not manifest
itself based on the gap statistic used above to assess TBTF.
Hence, rather than asking what the probability is for a gap
between 25 km s−1 and 55 km s−1, one should ponder about
the probability that a host halo reveals some gap, not nec-
essarily between these two exact values. This is also evident
from the fact that we have demonstrated that small changes
in the ‘user-specified’ values that define the gap results in
large changes in the MW consistent fraction, and thus in the
inference regarding the severity of TBTF. Ideally, then, one
should use a statistic that is ‘blind’ in that it does not rely
on an examination of the data beforehand.

Another problem with the previous statistics is that
both the massive subhaloes formulation and the density for-
mulation do not properly account for the Magellanic clouds.
We believe this to be a serious shortcoming, as the Magel-
lanic clouds, by themselves, put a tight constraint on the
mass of the Milky Way host halo (e.g., Busha et al. 2011).

Finally, it is important to realize that no study of TBTF
to date has properly accounted for the observational errors
in the Vmax measurements of the MW satellite galaxies. As
we demonstrate below, this introduces a huge uncertainty on
any MW-consistent fraction, and should be properly taken
into account.

Based on these considerations, we devise a new statistic
that is ‘blind’ (i.e., no scale has to be picked upfront), uses
all data on equal footing, and allows for a straightforward
treatment of errors in the Vmax measurements of individ-
ual MW satellites. Consider two rank-ordered distributions,
S1(x1, x2, ..., xN ) and S2(y1, y2, ..., yN). In our application,
xi and yi are the Vmax values of dark matter subhaloes,
while S1 and S2 are two different host haloes (i.e., two dif-
ferent model realizations for a host halo of given mass, or
a model realizations plus the actual Vmax data for satellite
galaxies in the MW). Note that S1 and S2 have the same
number of elements and that xi+1 ≥ xi and yi+1 ≥ yi. We
now introduce the statistic

Q ≡

∑N

i=1
|xi − yi|

∑N

i=1
(xi + yi)

(13)

which is a measure for the difference between the (cumula-

tive) distributions of S1 and S2. In particular, 1
N

∑N

i=1
|xi−

yi| is the absolute value of the area between the cumula-
tive distributions of S1 and S2. We normalize this area by
1
N

∑N

i=1
(xi + yi) so that Q is dimensionless, and insensitive

to an overall shift in x and y (i.e., multiplying xi and yi
by some factor f leaves Q invariant). Note that Q = 0 if
S1 = S2 (the distributions are identical), while Q = 1 if
either S1 or S2 consists solely of null elements (i.e., xi = 0
or yi = 0 for all i = 1, 2, ..., N). Note that this Q-statistic
is similar to the Kolmogorov-Smirnov test, which measures
the maximum value of the absolute difference, dKS, between
two cumulative distributions. However, the KS-test is not
well suited to characterize differences in the tails of two dis-
tributions; it mainly is sensitive to finding differences in the
median. We therefore opted to use the statistic Q instead,
which has equal sensitivity throughout the distributions. In
adopting Q to assess TBTF, each individual dark matter
host halo has a corresponding distribution S , in which the
elements are the rank-ordered values of Vmax for the N sub-
haloes with the largest Vmax values.

In order to turn the Q statistic into a probability mea-
sure, we proceed as follows. Given K = 10, 000 model real-
izations, for a given host halo mass, M0, and a given cosmol-
ogy, we first compute the values Qij for each pair {Si,Sj}
(with i, j = 1, 2, ..., K), where Si is the rank-ordered distri-
bution of the N largest Vmax values for model realization i.
Next we compute the average

Q̄i =
1

K − 1

∑

j≠i

Qij (14)

for each of the 10,000 realizations. Finally, we compute the
K values of QMW,i by comparing the Vmax distribution of
the MW to that of each of the 10,000 model realizations,
which yields
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Figure 8. Cumulative Γmax distributions for different halo masses, in the WMAP7 cosmology (left-hand panel), and the Planck cosmology
(middle panel). The MW-consistent regime (Γmax < 1) is highlighted in red. The right-hand panel shows the subhalo rmax–Vmax relations
for a host halo massM0 = 1012.0h−1M⊙ in the WMAP7 and Planck cosmologies. The circles (WMAP7) and triangles (Planck) correspond
to a random subsample of model realizations, while the solid and dashed lines indicate the corresponding median relations. The red shaded
band indicates the region occupied by MW dSphs. The top and side panels plot the Vmax and rmax distributions for model subhaloes
with Vmax > 18 km s−1. Note that subhaloes are expected to be significantly denser (i.e., smaller rmax) in the Planck cosmology.

this would have raised a similar concern of being inconsistent
with ΛCDM predictions. Yet, such a gap does not manifest
itself based on the gap statistic used above to assess TBTF.
Hence, rather than asking what the probability is for a gap
between 25 km s−1 and 55 km s−1, one should ponder about
the probability that a host halo reveals some gap, not nec-
essarily between these two exact values. This is also evident
from the fact that we have demonstrated that small changes
in the ‘user-specified’ values that define the gap results in
large changes in the MW consistent fraction, and thus in the
inference regarding the severity of TBTF. Ideally, then, one
should use a statistic that is ‘blind’ in that it does not rely
on an examination of the data beforehand.

Another problem with the previous statistics is that
both the massive subhaloes formulation and the density for-
mulation do not properly account for the Magellanic clouds.
We believe this to be a serious shortcoming, as the Magel-
lanic clouds, by themselves, put a tight constraint on the
mass of the Milky Way host halo (e.g., Busha et al. 2011).

Finally, it is important to realize that no study of TBTF
to date has properly accounted for the observational errors
in the Vmax measurements of the MW satellite galaxies. As
we demonstrate below, this introduces a huge uncertainty on
any MW-consistent fraction, and should be properly taken
into account.

Based on these considerations, we devise a new statistic
that is ‘blind’ (i.e., no scale has to be picked upfront), uses
all data on equal footing, and allows for a straightforward
treatment of errors in the Vmax measurements of individ-
ual MW satellites. Consider two rank-ordered distributions,
S1(x1, x2, ..., xN ) and S2(y1, y2, ..., yN). In our application,
xi and yi are the Vmax values of dark matter subhaloes,
while S1 and S2 are two different host haloes (i.e., two dif-
ferent model realizations for a host halo of given mass, or
a model realizations plus the actual Vmax data for satellite
galaxies in the MW). Note that S1 and S2 have the same
number of elements and that xi+1 ≥ xi and yi+1 ≥ yi. We
now introduce the statistic

Q ≡

∑N

i=1
|xi − yi|

∑N

i=1
(xi + yi)

(13)

which is a measure for the difference between the (cumula-

tive) distributions of S1 and S2. In particular, 1
N

∑N

i=1
|xi−

yi| is the absolute value of the area between the cumula-
tive distributions of S1 and S2. We normalize this area by
1
N

∑N

i=1
(xi + yi) so that Q is dimensionless, and insensitive

to an overall shift in x and y (i.e., multiplying xi and yi
by some factor f leaves Q invariant). Note that Q = 0 if
S1 = S2 (the distributions are identical), while Q = 1 if
either S1 or S2 consists solely of null elements (i.e., xi = 0
or yi = 0 for all i = 1, 2, ..., N). Note that this Q-statistic
is similar to the Kolmogorov-Smirnov test, which measures
the maximum value of the absolute difference, dKS, between
two cumulative distributions. However, the KS-test is not
well suited to characterize differences in the tails of two dis-
tributions; it mainly is sensitive to finding differences in the
median. We therefore opted to use the statistic Q instead,
which has equal sensitivity throughout the distributions. In
adopting Q to assess TBTF, each individual dark matter
host halo has a corresponding distribution S , in which the
elements are the rank-ordered values of Vmax for the N sub-
haloes with the largest Vmax values.

In order to turn the Q statistic into a probability mea-
sure, we proceed as follows. Given K = 10, 000 model real-
izations, for a given host halo mass, M0, and a given cosmol-
ogy, we first compute the values Qij for each pair {Si,Sj}
(with i, j = 1, 2, ..., K), where Si is the rank-ordered distri-
bution of the N largest Vmax values for model realization i.
Next we compute the average

Q̄i =
1

K − 1

∑

j≠i

Qij (14)

for each of the 10,000 realizations. Finally, we compute the
K values of QMW,i by comparing the Vmax distribution of
the MW to that of each of the 10,000 model realizations,
which yields
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Figure 6. Left-hand panel: the fraction of model realizations with no more than NGap subhaloes with Vmax ∈ (25, 55) km s−1 (solid
lines) or Vmax ∈ (30, 60) km s−1 (dashed lines), for different host halo masses as indicated (value reflects log[M0/(h−1M⊙)]). Right-hand

panel: the probabilities of having no more than one subhalo in the Vmax gap, P (NGap ≤ 1), no less than two Magellanic-Cloud analogs,
P (Nu ≥ 2), and both NGap ≤ 1 and Nu ≥ 2, P (NGap ≤ 1, Nu ≥ 2), as a function of host halo mass. The solid and dashed curves
correspond to different threshold Vmax values, as indicated in the left-hand panel.

and rmax, expressed as 0 < Γ < 1, is based on the assump-
tion that dark matter subhaloes have NFW density profiles.
Vera-Ciro et al. (2013) have shown that if one instead as-
sumes an Einasto profile with α = 0.5, the constraints on
Vmax and rmax are significantly altered, to the extent that
even the densest subhaloes in the Aquarius simulations are
now consistent with the data (i.e., one would no longer infer
a TBTF problem). However, subhaloes in numerical simu-
lations typically have density profiles that are well fit by an
Einasto profile, but with α ∼ 0.2, for which the constraints
on Vmax and rmax are very similar to those obtained as-
suming an NFW profile. Hence, the constraint 0 < Γ < 1
proposed by PZ12 is still valid, despite the oversimplified
assumption that subhaloes follow an NFW profile.

3.3.1 Mass and Cosmology Dependence

Fig. 8 investigates the dependence of the cumulative Γmax

distribution on halo mass and cosmology. The left-hand
panel plots the results for the WMAP7 cosmology. The
fraction of realizations with Γmax < 1 increases from 1%
at M0 = 1012.2 h−1M⊙ to 29% at M0 = 1011.6 h−1M⊙.
Also based on the WMAP7 cosmology, the PZ12 model pre-
dicts the MW-consistent fractions to be 20%, 10% and 10%
for M0 = 1011.8 h−1M⊙, 1012.0 h−1M⊙, and 1012.2 h−1M⊙

respectively, significantly higher than our findings of 16%,
4.5%, and 0.6%.

The middle panel of Fig. 8 plots the same results but
now for the Planck cosmology. The MW-consistent frac-
tion increases from 0.1% at M0 = 1012.2 h−1M⊙ to 9%
at M0 = 1011.6 h−1M⊙, significantly smaller that for the
WMAP7 cosmology. Therefore, a relatively small change in
cosmological parameters seems to have a relatively large im-
pact on the TBTF-statistics in the density formulation.

Polisensky and Ricotti (2014) argued that the cosmol-
ogy dependence mainly manifests itself as a change in the
rmax of subhaloes. To test this, the right-hand panel of Fig. 8

plots the rmax–Vmax diagram for the WMAP7 and Planck
cosmologies, at fixed halo mass of M0 = 1012.0 h−1M⊙. In
both cases, the rmax–Vmax relations are well fit by Eq. (12)
with p ≃ 1.4. The normalizations of the best-fit relations,
though, are different, with A = 0.62 for the Planck cos-
mology, and A = 0.74 for the WMAP7 cosmology. This
indicates that subhaloes in the Planck cosmology are, on
average, ∼ 20 percent denser than in the WMAP7 cosmol-
ogy. The top and side panels of the right-hand panel of Fig. 8
show the average subhalo Vmax and rmax distributions for all
subhaloes with Vmax > 18 kms−1, respectively. This clearly
shows that the difference in cosmology predominantly mani-
fests itself as a change in the rmax distribution of subhaloes,
confirming the results of Polisensky and Ricotti (2014).

The cosmology dependence of subhalo densities arises
from the cosmology dependence of the host halo assembly
histories: larger Ωm,0, smaller ΩΛ,0 and larger σ8, as in the
case of the Planck cosmology compared to the WMAP7 cos-
mology, all result in earlier (average) formation times for
host haloes of given present-day mass (e.g., van den Bosch
2002; Giocoli, Tormen & Sheth 2012). Earlier assembly im-
plies that the host halo accreted its subhaloes at earlier
epochs, when the Universe (and therefore the dark matter
haloes) was denser.

4 AN ALTERNATIVE STATISTIC

In the previous section we have used three different statis-
tics that have been used in the literature to assess the
TBTF problem. If we adopt a MW host halo mass of
M0 = 1012 h−1M⊙, the inference is that the MW-consistent
fraction ranges anywhere between ∼ 0.1% and ∼ 10%, de-
pending on which statistic one uses. Obviously, this raises
the question which is the more meaningful statistic to use.
We believe the answer is basically none of the above, and
the reason is that they either suffer from the ”look-elsewhere
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Dark Matter — Galaxy connection
3. “Too big to fail”

Potential solutions within CDM: 

• For M* >~ 106 Msun, existence of baryon-induced cores could explain low 
densities. 

• For M* <~ 106 Msun, satellite-specific mechanisms could be important (tidal 
stripping, disk shocking, ram-pressure stripping) between 1-2 Rvir,host. 

• Above not relevant for isolated field dwarfs, but see previous for potential 
issues with connecting observed rotation curves to gravitational potential.



Dark Matter — Galaxy connection
4. Planes and lines

Figure 12

Regularity vs. Diversity. Left: The radial acceleration relation from McGaugh, Lelli & Schombert
(2016, slightly modified) showing the centripetal acceleration observed in rotation curves,
gobs = V 2/r, plotted versus the expected acceleration from observed baryons gbar for 2700
individual data points from 153 galaxy rotation curves. Large squares show the mean and the
dashed line lines show the rms width. Right: Green points show the circular velocities of observed
galaxies measured at 2 kpc as a function of Vmax from Oman et al. (2015) as re-created by
Creasey et al. (2017). For comparison, the gray band shows expectations from dark matter only
⇤CDM simulations. There is much more scatter at fixed Vmax than predicted by the simulations.
Note that the galaxies used in the RAR in left-hand panel have Vmax values that span the range
shown on the right. The tightness of the acceleration relation is remarkable (consistent with zero
scatter given observational error, red cross), especially given the variation in central densities seen
on the right.

planes this way. Importantly, Phillips et al. (2015) have re-analyzed the SDSS data and

argued that it is not consistent with a ubiquitous co-rotating satellite population and rather

more likely a statistical fluctuation. More data that enables a statistical sample of hosts

down to fainter satellites will be needed to determine whether the configurations seen in

the Local Group are common.

2.5. Regularity in the Face of Diversity

Among the more puzzling aspects of galaxy phenomenology in the context of ⇤CDM are the

tight scaling relations between dynamical properties and baryonic properties, even within

systems that are dark matter dominated. One well-known example of this is the baryonic

Tully-Fisher relation (McGaugh 2012), which shows a remarkably tight connection between

the total baryonic mass of a galaxy (gas plus stars) and its circular velocity Vflat (' Vmax):

Mb / V
4
flat. Understanding this correlation with ⇤CDM models requires care for the low-

mass galaxies of most concern in this review (Brook, Santos-Santos & Stinson 2016).

A generalization of the baryonic Tully-Fisher relation known as the radial acceleration

relation (RAR) was recently introduced by McGaugh, Lelli & Schombert (2016). Plotted

in left-hand Figure 12, the RAR shows a tight correlation between the radial acceleration

traced by rotation curves (gobs = V
2
/r) and that predicted solely by the observed dis-
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Figure 11

Planes of Satellites. Left : Edge-on view of the satellite distribution around the Milky Way
(updated from Pawlowski, McGaugh & Jerjen 2015) with the satellite galaxies in yellow, young
halo globular clusters and star clusters in blue, and all other newly-discovered objects
(unconfirmed dwarf galaxies or star clusters) are shown as green triangles. The red lines in the
center dictate the position and orientation of streams in the MW halo. The gray wedges span 24
degrees about the plane of the MW disk, where satellite discovery might be obscured by the
Galaxy. Right : The satellite distribution around Andromeda (modified by M. Pawlowski from
Ibata et al. 2013) where the red points are satellites belonging to the identified kinematic plane.
Triangles pointing up are receding relative to M31. Triangles pointing down are approaching.

et al. 2016, though see Macciò et al. 2016 and Brooks et al. 2017 for arguments that no

discrepancy exists). The generic observation in the low-redshift Universe, then, is that the

inferred central masses of galaxies with 105 . M?/M� . 108 are ⇠ 50% smaller than

expected from dissipationless ⇤CDM simulations.

The too-big-to-fail and core/cusp problems would be naturally connected if low-mass

galaxies generically have dark matter cores, as this would reduce their central densities

relative to CDM expectations5. However, the problems are, in principle, separate: one

could imagine galaxies that have large constant-density cores yet still with too much central

mass relative to CDM predictions (solving the core/cusp problem but not too-big-to-fail),

or having cuspy profiles with overall lower density amplitudes than CDM (solving too-big-

to-fail but not core/cusp).

2.4. Satellite Planes

Kunkel & Demers (1976) and Lynden-Bell (1976) pointed out that satellite galaxies ap-

peared to lie in a polar great circle around the Milky Way. Insofar as this cannot be

explained in a theory of structure formation, this observation pre-dates all other small-scale

interpreted as a “missing dwarfs” problem if one considers the discrepancy as one in numbers at
fixed Vhalo. We believe, however, that the more more plausible interpretation is a discrepancy in
Vhalo at fixed number density.

5For a sense of the problem, the amount of mass that would need to be removed to alleviate the
issue on classical dwarf scales is ⇠ 107M� within ⇠ 300 pc
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Simulations: CDM
Numerical techniques

Goal:  
Solve collisionless Boltzmann eqn with cold ICs 

Approach:  
N-body technique  

• Sample phase space distribution function with mass tracers (`particles’) and 
follow their positions and velocities (Newton’s law augmented by Poisson 
equation). 

• Avoid small scale 2-body effects through `force softening’ (Newton’s law 
with a core radius). 

• Code efficiency + accuracy increases by combining Fourier techniques on 
particle mesh (PM) for large scale forces with direct calculations for small 
scale forces. 

• Test for convergence of various statistics with Npart, softening scale, PM grid 
size, etc. 

Typical application:  
Periodic cubic box in comoving coordinates.

304 M. R. Lovell et al.

Figure 2. Images of our haloes at redshift z = 0. The panels show CDM-W7 (top), m2.3, m2.0, m1.6 and m1.5 (left to right, then top to bottom). The image
intensity and hue indicate the projected squared dark matter density and the density-weighted mean velocity dispersion, respectively (Springel et al. 2008a).
Each panel is 1.5 Mpc on a side.

While genuine haloes in a simulation at a given resolution are
expected to be present in the same simulation at higher resolu-
tion, this need not be the case for spurious haloes, as illustrated in
Fig. 5. Springel et al. (2008a) showed that it is possible to match
haloes and subhaloes between different resolution simulations by
tracing their particles back to the initial conditions and identifying
overlapping Lagrangian patches in the two simulations. We refer

to the initial Lagrangian region of each halo, or more precisely
the unperturbed simulation particle load, as its ‘protohalo’. The
initial positions of the particles displayed in Fig. 5 are shown in
Fig. 6. The two large objects originate from protohaloes of similar
size and location, but there are clear discrepancies in the number,
location and mass of the small objects. Thus, attempts to match
small haloes in the two simulations will often fail because spurious
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Simulations: CDM
Products

Post-processing: 
Identify halos, substructure, merger tree. 

Predictions:  
Halo + subhalo mass functions, accretion history, clustering (halos/DM).

Figure 4

Steep mass functions. The black solid line shows the z = 0 dark matter halo mass function
(Mhalo = Mvir) for the full population of halos in the universe as approximated by Sheth, Mo &
Tormen (2001). For comparison, the magenta lines show the subhalo mass functions at z = 0
(defined as Mhalo = Msub = Mpeak, see text) at the same redshift for host halos at four
characteristic masses (Mvir = 1012, 1013, 1014, and 1015M�) with units given along the right-hand
axis. Note that the subhalo mass functions are almost self-similar with host mass, roughly shifting
to the right by 10⇥ for every decade increase in host mass. The low-mass slope of subhalo mass
function is similar than the field halo mass function. Both field and subhalo mass functions are
expected to rise steadily to the cuto↵ scale of the power spectrum, which for fiducial CDM
scenarios is ⌧ 1M�.

“flat” region of a galaxy rotation curve. For our “small-scale” mass of Mvir = 1011M�,

typically Vmax ' 1.2Vvir ' 60 km s�1.

1.4. Dark matter substructure

It was only just before the turn of the century that N -body simulations set within a cos-

mological CDM framework were able to robustly resolve the substructure within individual

dark matter halos (Ghigna et al. 1998; Klypin et al. 1999a). It soon became clear that

the dense centers of small halos are able to survive the hierarchical merging process: dark

matter halos should be filled with substructure. Indeed, subhalo counts are nearly self-

similar with host halo mass. This was seen as welcome news for cluster-mass halos, as the

substructure could be easily identified with cluster galaxies. However, as we will discuss

in the next section, the fact that Milky-Way-size halos are filled with substructure is less

clearly consistent with what we see around the Galaxy.

Quantifying subhalo counts, however, is not so straightforward. Counting by mass

is tricky because the definition of “mass” for an extended distribution orbiting within a
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Figure 4. Average mass profiles at z = 0 and accretion histories for halos in three different mass bins (see shaded regions in the bottom
panel of Fig. 2). Top left: Average mass profiles of all halos in each bin, plotted as enclosed mass (in units of M200), versus inner density
(in units of 200× the critical density). Dashed lines are best-fit NFW profiles, which have a single adjustable parameter, the concentration,
c = r200/r−2. Heavy symbols indicate the enclosed mass, M−2, and density, ⟨ρ−2⟩, at the scale radius of each profile. Residuals from
the best fits are shown in the bottom inset. Top right: Same as top-left panel, but scaled to the enclosed mass, M−2, and overdensity,
⟨ρ−2⟩, at the scale radius. Scaled in this manner, halo mass profiles all look alike and are very well approximated by an NFW profile
(dashed curve). Bottom left: Average accretion histories of the same halos shown in the top panels. The plots show the growth of the
virial mass of the main progenitor, normalized to the final mass at z = 0, as a function of time, expressed in terms of the critical density
of the Universe at each redshift. The dashed curves are not fits to the data. Rather, they indicate accretion histories parameterized, as
in the top panel, by an NFW profile in this M -ρ plane. The single adjustable parameter to these profiles is fully specified by the filled
heavy symbols, which indicate M−2, chosen to match that of the mass profiles (top-left panel) and by ρcrit(z−2), computed as 776 ⟨ρ−2⟩
following the correlation shown in the middle panel of Fig. 3. The open heavy symbols indicate the scale mass and density of the fitted
NFW profile. Bottom right: Same accretion histories as in the bottom-left panel, but scaled to M−2 and ⟨ρ−2⟩ (open heavy symbols in
the bottom-left panel). Note the remarkable similarity in the shape of the halo mass profiles at z = 0 and that of the accretion histories
of their main progenitors.
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3. HALO MASS FUNCTION

3.1. Fitting Formula and General Results

Although the number density of collapsed halos of a given
mass depends sensitively on the shape and amplitude of the power
spectrum, successful analytical Ansätze predict the halo abun-
dance quite accurately by using a universal function describ-
ing the mass fraction of matter in peaks of a given height, ! !
"c/#(M; z), in the linear density field smoothed at some scale R ¼
(3M /4$%̄m)

1/3 (Press & Schechter 1974; Bond et al. 1991; Sheth
& Tormen 1999). Here, "c # 1:69 is a constant corresponding to
the critical linear overdensity for collapse and #(M ; z) is the rms
variance of the linear density field smoothed on scale R(M ). The
traditional nonlinear mass scale M$ corresponds to # ¼ "c. This
fact has motivated the search for accurate universal functions de-
scribing simulation results by Jenkins et al. (2001), White (2002),
and Warren et al. (2006). Following these studies, we choose the
following functional form to describe halo abundance in our
simulations:

dn

dM
¼ f (#)

%̄m
M

d ln #% 1

dM
: ð2Þ

In extended Press-Schechter theory, the overdensity at a location
in a linear density field follows a random walk with decreasing
smoothing scale. The function f (#) is the #-weighted distribution
of first crossings of these random walks across a barrier separat-
ing collapsed objects from uncollapsed regions (e.g., where the
random-walking overdensity first crosses "c). The function f (#)
is expected to be universal to the changes in redshift and cos-
mology and is parameterized as

f (#) ¼ A
#

b

! "% a

þ 1

# $
e% c=# 2

; ð3Þ

where

#2 ¼
Z

P(k)Ŵ (kR)k 2 dk; ð4Þ

P(k) is the linear matter power spectrum as a function of wave-
number k, and Ŵ is the Fourier transform of the real-space top-
hat window function of radius R. It is convenient to recall that the
matter variance monotonically decreases with increasing smooth-
ing scale; thus, higherM corresponds to lower #. In the figures and
text, we will use log #% 1 as the independent variable. This quan-
tity increases monotonically with halo mass.

The functional form (3) was used in Warren et al. (2006) with
minor algebraic difference, and is similar to the forms used by
Sheth & Tormen (1999)11 and Jenkins et al. (2001). ParametersA,
a, b, and c are constants to be calibrated by simulations. The pa-
rameter A sets the overall amplitude of the mass function, while a
and b set the slope and amplitude of the low-mass power law, re-
spectively. The parameter c determines the cutoff scale at which
the abundance of halos exponentially decreases.

The best-fit values of these parameters were determined by fit-
ting equation (3) to all the z ¼ 0 simulations using &2 minimiza-
tion and are listed in Table 2 for each value of !. For! ) 1600,

we fix the value of A to be 0.26 without any loss of accuracy.12

This allows the other parameters to vary monotonically with!,
allowing for smooth interpolation between values of !.
Figure 5 shows the mass function measured for three values

of ! and the corresponding best-fit analytic functions. We plot
(M 2/%̄m) dn/dM rather than dn/dM to reduce the dynamic range
of the y-axis, as dn/dM values span nearly 14 orders of magni-
tude. The figure shows that as ! increases the halo masses be-
come systematically smaller. Thus, from ! ¼ 200 to 3200, the
mass scale of the exponential cutoff reduces substantially. The
shape of the mass function is also altered; at! ¼ 200 the loga-
rithmic slope at low masses is *% 1.85, while at ! ¼ 3200 the
slope is nearly % 2. This change in slope is due to two effects. First,
the fractional change in mass when converting between values of
! is not a constant; it depends on halo mass. Because halo con-
centrations are higher for smaller halos, the fractional change is
higher at lower masses, thus steepening the mass function. Sec-
ond, a number of low-mass objects withinR200 of a larger halo are
‘‘exposed’’ as distinct halos when halos are identified with ! ¼
3200. Although all halos contain substructure, these ‘‘revealed’’
subhalos will only impact overall abundance of objects at low
mass,M P 1012 h% 1 M+ , because the satellite fraction (the frac-
tion of all halos located within virial radii of larger halos) de-
creases rapidly from #20% to zero for M > 1012 h% 1 M+ (e.g.,
Kravtsov et al. 2004). This trend can be understood using aver-
age properties of subhalos in parent CDM halos. Subhalo popu-
lations are approximately self-similar with only a weak trend with
mass (e.g., Moore et al. 1999; Gao et al. 2004), and the largest11 A convenient property of the Sheth & Tormenmass function is that one re-

covers the mean matter density of the universe when integrating over all mass;
the function is normalized such that

R
f (#) d ln #% 1 ¼ 1. Eq. (3) does not con-

verge when integrating to log #% 1 ¼ % 1. In Appendix C we present a modified
fitting function that is properly normalized at all ! but still produces accurate
results at z ¼ 0.

12 Although a four-parameter function is required to accurately fit the data at
low!, at high overdensities the error bars are sufficiently large that a degeneracy
between A and a emerges, and the data can be fit with only three free parameters,
given a reasonable choice for A.

Fig. 5.—Measured mass functions for all WMAP1 simulations, plotted as
(M 2/%̄m) dn/dM against logM . The solid curves are the best-fit functions from
Table 2. The three sets of points show results for! ¼ 200, 800, and 3200 ( from
top to bottom). To provide a rough scaling betweenM and #% 1, the top axis of the
plot shows#% 1 for thismass range for theWMAP1 cosmology. The slight offset be-
tween the L1280 results and the solid curves is due to the slightly lower value of
"m ¼ 0:27.
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Figure 3. Baryon Acoustic Oscillations (BAO) measured in MICE-GC (black symbols with error-bars) power spectrum compared to the
theory prediction from Renormalized Perturbation Theory, RPT (blue line, see Crocce and Scoccimarro 2008) and the latest numerical
fit from the Coyote Emulator (orange line, Heitmann et al. 2013) and the revised Halofit (green line, Takahashi et al. 2012). The RPT
model at two loops reproduces very well the BAO in the simulation across redshifts (each panel is shown up to the maximum k where
RPT is valid). In turn at z = 0 the Emulator yields a very good match with MICE-GC (except for the amplitude of the first peak
with a di↵erence . 2%). At z = 0.5, 1 the broad-band power has the correct shape but is 2% (systematically) above the N-body. The
revised halofit also agrees with MICE-GC at the 2% level at these redshifts but the amplitude of the oscillations are somewhat too large.
Displayed error-bars assume Gaussian fluctuations, �P =

p
2/nmodesPk, but we take Pk to be the non-linear spectrum (see text).

logical simulation as a powerful tool to model accurately

current and upcoming deep wide-area astronomical surveys

such as DES2, HSC3, Euclid4, DESI5, HETDEX6, LSST7,

WFIRST8, among others.

We test the ability of MICE-GC to model these large-

surveys on the smaller scales and to what extent it resolves

the small-mass halos inhabited by the faintest galaxies these

surveys will observe. Figure 2 shows how MICE-GC com-

pares to the largest simulations currently available in per-

formance to sample large cosmological volumes and capture,

at the same time, low enough luminosity galaxies Lmin, or

equivalently, large enough r-band absolute magnitude Mr.

The relation between minimum halo mass and minimum

galaxy luminosities modeled, as shown in the Figure, as-

sumes a sub-halo abundance matching galaxy assignment

scheme on well-resolved dark-matter halos containing at least

100 particles. We show the following simulations: Millen-

nium XXL (MXXL; Angulo et al. (2012)), Horizon Runs

(HR; Kim et al. (2009, 2011)), Horizon Simulation (HS;

Teyssier et al. (2009)), DEUSS (Alimi et al. 2012), Jubilee

(Watson et al. 2013), MICE Intermediate Resolution (MICE-

IR; Fosalba et al. (2008)), MICE Super-Hubble-Volume (MICE-

SHV; Crocce et al. (2010)) and the MICE-GC simulation.

This suite of simulations includes numbers of particles

2
www.darkenergysurvey.org

3
www.naoj.org/Projects/HSC

4
www.euclid-ec.org

5
desi.lbl.gov

6
hetdex.org

7
www.lsst.org

8
wfirst.gsfc.nasa.gov

that span from about 10 billion up to 1 trillion particles,

already accesible in the largest supercomputers around the

world. This figure shows the trade-o↵ between high mass

resolution and large volume sampling what tends to dis-

tribute the most competitive simulations to date along the

dashed lines shown, depending on the number of particles

used. As an example, in order to resolve Mr = �18 galaxies

one would need to develop a simulation with a (4 Gpc/h)3

box-size that includes about 5 trillion particles (i.e, 163843).

This is one order of magnitude larger than the MXXL and

almost two orders of magnitude bigger than e.g, the MICE-

GC, which are among the largest simulations completed to

date.

3 3D CLUSTERING

3.1 Power spectrum

One of our main goals is to study the large scale clustering

with high precision, in particular the baryon acoustic oscilla-

tions (BAO). Hence Fig. 3 shows the matter 3D power spec-

trum measured in MICE-GC at large (BAO) scales for three

comoving outputs, z = 0, 0.5 and 1 (divided by a smooth

broad-band power). For comparison we included linear the-

ory, the Renormalized Perturbation Theory prediction as

presented in Crocce & Scoccimarro (2008), and the numer-

ical fits from Heitmann et al. (2013) (i.e., the Coyote Emu-

lator) and Takahashi et al. (2012), which we shall name the

revised halofit. The prediction from RPT reproduces very

well the region of BAO, thus cross validating the model-

ing and the N-body precision in describing this feature. We

c� 0000 RAS, MNRAS 000, 000–000

Fosalba+ (2015)



Simulations: beyond CDM
Numerical issues

Case study: 
Warm DM (same as CDM but with cutoff in initial power spectrum)  

• Ignore thermal dispersion at z <~ 100 (where simulation ICs are usually set.) [[not good for neutrinos!]] 
• So just replace IC file and run N-body code!! [[wouldn’t work for SIDM / ALP]] 

Problem: 
discretisation noise → spurious perturbations (which gravitate) → spurious halos!

Properties of WDM haloes 305

Table 2. Properties of the main friends-of-friends halo in each HRS.
The radii r200 and r200b enclose regions within which the mean density
is 200 times the critical and background density, respectively. The
masses M200 and M200b are those contained within these radii. We also
reproduce data from the original Aquarius Aq-A2 halo.

Simulation M200( M⊙) r200(kpc) M200b( M⊙) r200b(kpc)

CDM-W7 1.94 × 1012 256.1 2.53 × 1012 432.1
m2.3 1.87 × 1012 253.4 2.52 × 1012 431.4
m2.0 1.84 × 1012 251.7 2.51 × 1012 430.8
m1.6 1.80 × 1012 250.1 2.49 × 1012 429.9
m1.5 1.80 × 1012 249.8 2.48 × 1012 429.0
Aq-A2 1.84 × 1012 245.9 2.52 × 1012 433.5

Figure 3. Density profiles of the main haloes (including subhaloes) in the
simulations normalized by the background matter density. The line colours
are as in Fig. 1. The profiles are plotted only beyond the ‘Power radius’
(Power et al. 2003) at which numerical convergence is expected. The bottom
panel shows the profiles for the WDM simulations normalized to the profile
for the CDM-W7 model.

Figure 4. Radial variation of the logarithmic slope of the density profiles
of the main haloes in the simulations. Line colours and plotting range are as
in Fig. 3.

Figure 5. A region of a WDM simulation performed at two different reso-
lutions. The particle mass for the HRS (right) is 29 times smaller than that
of the low resolution case (left). Only particles in bound structures at this
snapshot are shown. Particles are coloured according to the halo to which
they belong. The number of particles plotted in each panel is equal to the
number of bound-structure particles in the LRS; we have applied random
sampling in the high resolution case.

Figure 6. The particles of Fig. 5 traced back to their positions in the initial
conditions. The LRS is shown in the top panel and the HRS in the bottom
panel. Note the highly flattened configurations of spurious haloes.

haloes in the low resolution calculation do not have a counterpart in
the HRS.

A third criterion exploits the most striking feature visible in Fig. 6:
the shapes of the protohaloes. Genuine protohaloes are spheroidal,

MNRAS 439, 300–317 (2014)
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Figure 10. Dot plots of s and MMax for subhaloes in the four different
WDM models at high resolution. The horizontal, dashed line is scut and the
vertical line is Mmin. All subhaloes are within r200b of the main subhalo
centre at redshift zero.

the uncertainty in Rmin. For simplicity, we will adopt κ = 0.5; we find
that this value provides a good compromise between rejecting low
mass genuine objects and including high mass spurious subhaloes
in all four models. Varying Rmin and κ in the range stated here makes
a difference of ∼10 per cent to the number of subhaloes returned
in the m1.5 model and ∼5 per cent in the other cases. The values of
Mmin are then 1.5 × 108, 2.2 × 108, 3.2 × 108 and 4.2 × 108 M⊙
for the m2.3, m2.0, m1.6 and m1.5 models, respectively, in the LRS.
For the HRS, they decrease to 5.1 × 107, 7.0 × 107, 1.1 × 108 and
1.4 × 108 M⊙.

To summarize, we have used the mass, resolution dependent and
Lagrangian region shape properties to identify spurious subhaloes
in our subhalo catalogues. Having derived values for scut and Mmin

– the latter as a function of power spectrum cutoff and resolution –
we can apply these cuts to the HRS. We plot the results in Fig. 10.
Changing the value of κ in the range 0.4–0.6 produces a variation
of <5 per cent in all four HRS models, and this does not affect our
conclusions. In what follows we consider only those subhaloes that
pass the cuts in each of these panels.

4 R ESULTS

4.1 The subhalo mass and Vmax functions

In Fig. 11 we present the cumulative distributions of subhalo mass,
Msub, and Vmax at z = 0, where Vmax is defined as the peak amplitude
of the circular velocity profile Vcirc =

√
GM(<r)/r, with G being

the gravitational constant and M(<r) the mass enclosed within ra-
dius r. This is a useful proxy for mass that is insensitive to the
definition of the edge of the subhalo. The figure includes both gen-
uine (solid lines) and spurious (dashed lines) subhaloes. Overall, the
spurious subhaloes outnumber the genuine ones by a factor of 10.
However, the mass function is dominated by genuine haloes beyond
Msub ∼ (1–3) × 107 M⊙, corresponding to Vmax∼ (4−6) km s−1, for
the different models. The differential mass function (relative to the

Figure 11. Cumulative subhalo mass, Msub, (top panel) and Vmax (bottom
panel) functions of subhaloes within r < r200b of the main halo centre in
the HRS at z = 0. Solid lines correspond to genuine subhaloes and dashed
lines to spurious subhaloes. The black line shows results for CDM-W7 and
the coloured lines for the WDM models, as in Fig. 1. The black cross in the
lower panel indicates the expected number of satellites of Vmax > 5.7 km s−1

as derived in the text.

CDM mass function) for genuine haloes in the m2.3 case can be
fitted with the functional form given by Schneider et al. (2012):

nWDM/nCDM = (1 + MhmM−1)β , (7)

where Mhm is the mass associated with the scale at which the WDM
matter power spectrum is suppressed by 50 per cent relative to the
CDM power spectrum, M is subhalo mass and β is a free parameter.
The best-fitting value is β of 1.3, slightly higher than the value of
1.16 found by Schneider et al. (2012) for friends-of-friends haloes
(rather than SUBFIND subhaloes as in our case). A slightly better fit
is obtained by introducing an additional parameter, γ , such that

nWDM/nCDM = (1 + γMhmM−1)β , (8)

with γ = 2.7 and β = 0.99. However, better statistics are required
to probe the subhalo mass function more precisely.

In principle, comparison of the abundance of subhaloes shown
in Fig. 11 with the population of satellite galaxies observed in
the Milky Way can set a strong constraint on the mass of viable
WDM particle candidates. Assuming that every satellite possesses
its own dark matter halo and that the parent halo in our simulations
has a mass comparable to that of the Milky Way halo, a minimum
requirement is that the number of subhaloes in the simulations above
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Figure 10. Dot plots of s and MMax for subhaloes in the four different
WDM models at high resolution. The horizontal, dashed line is scut and the
vertical line is Mmin. All subhaloes are within r200b of the main subhalo
centre at redshift zero.

the uncertainty in Rmin. For simplicity, we will adopt κ = 0.5; we find
that this value provides a good compromise between rejecting low
mass genuine objects and including high mass spurious subhaloes
in all four models. Varying Rmin and κ in the range stated here makes
a difference of ∼10 per cent to the number of subhaloes returned
in the m1.5 model and ∼5 per cent in the other cases. The values of
Mmin are then 1.5 × 108, 2.2 × 108, 3.2 × 108 and 4.2 × 108 M⊙
for the m2.3, m2.0, m1.6 and m1.5 models, respectively, in the LRS.
For the HRS, they decrease to 5.1 × 107, 7.0 × 107, 1.1 × 108 and
1.4 × 108 M⊙.

To summarize, we have used the mass, resolution dependent and
Lagrangian region shape properties to identify spurious subhaloes
in our subhalo catalogues. Having derived values for scut and Mmin

– the latter as a function of power spectrum cutoff and resolution –
we can apply these cuts to the HRS. We plot the results in Fig. 10.
Changing the value of κ in the range 0.4–0.6 produces a variation
of <5 per cent in all four HRS models, and this does not affect our
conclusions. In what follows we consider only those subhaloes that
pass the cuts in each of these panels.

4 R ESULTS

4.1 The subhalo mass and Vmax functions

In Fig. 11 we present the cumulative distributions of subhalo mass,
Msub, and Vmax at z = 0, where Vmax is defined as the peak amplitude
of the circular velocity profile Vcirc =

√
GM(<r)/r, with G being

the gravitational constant and M(<r) the mass enclosed within ra-
dius r. This is a useful proxy for mass that is insensitive to the
definition of the edge of the subhalo. The figure includes both gen-
uine (solid lines) and spurious (dashed lines) subhaloes. Overall, the
spurious subhaloes outnumber the genuine ones by a factor of 10.
However, the mass function is dominated by genuine haloes beyond
Msub ∼ (1–3) × 107 M⊙, corresponding to Vmax∼ (4−6) km s−1, for
the different models. The differential mass function (relative to the

Figure 11. Cumulative subhalo mass, Msub, (top panel) and Vmax (bottom
panel) functions of subhaloes within r < r200b of the main halo centre in
the HRS at z = 0. Solid lines correspond to genuine subhaloes and dashed
lines to spurious subhaloes. The black line shows results for CDM-W7 and
the coloured lines for the WDM models, as in Fig. 1. The black cross in the
lower panel indicates the expected number of satellites of Vmax > 5.7 km s−1

as derived in the text.

CDM mass function) for genuine haloes in the m2.3 case can be
fitted with the functional form given by Schneider et al. (2012):

nWDM/nCDM = (1 + MhmM−1)β , (7)

where Mhm is the mass associated with the scale at which the WDM
matter power spectrum is suppressed by 50 per cent relative to the
CDM power spectrum, M is subhalo mass and β is a free parameter.
The best-fitting value is β of 1.3, slightly higher than the value of
1.16 found by Schneider et al. (2012) for friends-of-friends haloes
(rather than SUBFIND subhaloes as in our case). A slightly better fit
is obtained by introducing an additional parameter, γ , such that

nWDM/nCDM = (1 + γMhmM−1)β , (8)

with γ = 2.7 and β = 0.99. However, better statistics are required
to probe the subhalo mass function more precisely.

In principle, comparison of the abundance of subhaloes shown
in Fig. 11 with the population of satellite galaxies observed in
the Milky Way can set a strong constraint on the mass of viable
WDM particle candidates. Assuming that every satellite possesses
its own dark matter halo and that the parent halo in our simulations
has a mass comparable to that of the Milky Way halo, a minimum
requirement is that the number of subhaloes in the simulations above
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Figure 2. Images of our haloes at redshift z = 0. The panels show CDM-W7 (top), m2.3, m2.0, m1.6 and m1.5 (left to right, then top to bottom). The image
intensity and hue indicate the projected squared dark matter density and the density-weighted mean velocity dispersion, respectively (Springel et al. 2008a).
Each panel is 1.5 Mpc on a side.

While genuine haloes in a simulation at a given resolution are
expected to be present in the same simulation at higher resolu-
tion, this need not be the case for spurious haloes, as illustrated in
Fig. 5. Springel et al. (2008a) showed that it is possible to match
haloes and subhaloes between different resolution simulations by
tracing their particles back to the initial conditions and identifying
overlapping Lagrangian patches in the two simulations. We refer

to the initial Lagrangian region of each halo, or more precisely
the unperturbed simulation particle load, as its ‘protohalo’. The
initial positions of the particles displayed in Fig. 5 are shown in
Fig. 6. The two large objects originate from protohaloes of similar
size and location, but there are clear discrepancies in the number,
location and mass of the small objects. Thus, attempts to match
small haloes in the two simulations will often fail because spurious
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Simulations: beyond CDM
Numerical issues

Solutions:  
• statistical (limited use).  
• clean up catalogs object-by-object (better than statistical).  
• move to phase-space interpolation techniques (currently expensive)

Properties of WDM haloes 305

Table 2. Properties of the main friends-of-friends halo in each HRS.
The radii r200 and r200b enclose regions within which the mean density
is 200 times the critical and background density, respectively. The
masses M200 and M200b are those contained within these radii. We also
reproduce data from the original Aquarius Aq-A2 halo.

Simulation M200( M⊙) r200(kpc) M200b( M⊙) r200b(kpc)

CDM-W7 1.94 × 1012 256.1 2.53 × 1012 432.1
m2.3 1.87 × 1012 253.4 2.52 × 1012 431.4
m2.0 1.84 × 1012 251.7 2.51 × 1012 430.8
m1.6 1.80 × 1012 250.1 2.49 × 1012 429.9
m1.5 1.80 × 1012 249.8 2.48 × 1012 429.0
Aq-A2 1.84 × 1012 245.9 2.52 × 1012 433.5

Figure 3. Density profiles of the main haloes (including subhaloes) in the
simulations normalized by the background matter density. The line colours
are as in Fig. 1. The profiles are plotted only beyond the ‘Power radius’
(Power et al. 2003) at which numerical convergence is expected. The bottom
panel shows the profiles for the WDM simulations normalized to the profile
for the CDM-W7 model.

Figure 4. Radial variation of the logarithmic slope of the density profiles
of the main haloes in the simulations. Line colours and plotting range are as
in Fig. 3.

Figure 5. A region of a WDM simulation performed at two different reso-
lutions. The particle mass for the HRS (right) is 29 times smaller than that
of the low resolution case (left). Only particles in bound structures at this
snapshot are shown. Particles are coloured according to the halo to which
they belong. The number of particles plotted in each panel is equal to the
number of bound-structure particles in the LRS; we have applied random
sampling in the high resolution case.

Figure 6. The particles of Fig. 5 traced back to their positions in the initial
conditions. The LRS is shown in the top panel and the HRS in the bottom
panel. Note the highly flattened configurations of spurious haloes.

haloes in the low resolution calculation do not have a counterpart in
the HRS.

A third criterion exploits the most striking feature visible in Fig. 6:
the shapes of the protohaloes. Genuine protohaloes are spheroidal,

MNRAS 439, 300–317 (2014)
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Figure 4. Correction of WDM mass functions for the effects of spurious structure formation in the simulations. Left-hand panel: WDM with mWDM =
0.25 keV; middle panel: WDM with mWDM = 0.5 keV; right-hand panel: WDM with mWDM = 1.0 keV. The CDM measurements have been added to every
panel for comparison. The faint symbols correspond to the original mass function, and the bold symbols correspond to the corrected mass function. The grey
lines are the power laws which are subtracted. The fitting is done over the yellow symbols. The WDM mass function decreases towards low masses only when
this correction is applied.

upturn must be real. In order to get a meaningful approximation of
the physical mass function, the artificial power law should therefore
be subtracted from the measurements. We do this by individually
fitting a separate power-law function to the artificial part of every
simulation and then subtract this power-law function from the mea-
surements. The artificial part is determined via a visible inspection
and consists of the data points that are clearly above the upturn,
where the shape of the mass function is a pure power law. This ap-
proach of subtracting artefacts allows us to get a meaningful mass
function down to the mass scale where the artificial upturn is a
pure power law. However, it is important to note that this involves
an extrapolation of the spurious halo mass function to large mass
scales.

In Fig. 4 the corrected mass function with power-law subtraction
is plotted in solid bold symbols while the faint symbols corre-
spond to the original non-corrected mass function. The left-hand
panel shows the measured mass function of the WDM run with
mWDM = 0.25 keV (blue), the middle panel the WDM run with
mWDM = 0.5 keV (green) and the right-hand panel the WDM run
with mWDM = 1.0 keV (red). The power laws, which are subtracted
from the original mass function, are plotted as grey lines and the
fitting of these lines is done over the yellow symbols.

In the following we will only consider the corrected measurement
of the mass function and use it to calibrate our analytical approaches.

4 MA S S FU N C T I O N IN A W D M U N I V E R S E

The EPS framework (Press & Schechter 1974; Bond et al. 1991;
Lacey & Cole 1993; Musso & Sheth 2012) captures many important
features of the end states of structure formation in the CDM model.
In particular, the halo mass function can be defined as

dn

d log M
= −1

2
ρ̄

M
f (ν)

d log σ 2

d log M
, (12)

where f (ν) is the first crossing distribution, σ 2(M) the variance at
the mass scale M and ρ̄ is the average density of the universe.

On assuming uncorrelated random walks and a collapse barrier set
by the spherical collapse model, the excursion set model predicts
(Press & Schechter 1974; Bond et al. 1991)

f (ν) =
√

2ν

π
e−ν/2, ν ≡ δ2

c (t)
σ 2(M)

, (13)

where δc(t) = 1.686/D(t) is the linearly extrapolated density for
collapse in the spherical model and D(t) is the growth factor
normalized to be unity at z = 0. An ellipsoidal collapse barrier
gives

f (ν) = A

√
2qν

π

[
1 + (qν)−p

]
e−qν/2, (14)

where p = 0.3 and A = 0.3222 (Sheth & Tormen 1999). The third
parameter q is predicted to be one in the ellipsoidal approach, but
Sheth & Tormen realized that the cluster abundance in simulations
is better matched with the empirical value q = 0.707.

In this framework all of the sensitivity of the mass function to
cosmology is encoded in the variance of the density perturbations
on a given scale R. The variance can be expressed as

σ 2(R) =
∫

d3k
(2π)3

PLin(k)W 2(kR), (15)

where PLin is the linear theory matter power spectrum at z = 0 and
W is the Fourier transform of the filter function. Note that in the EPS
framework the predictions are unchanged if we consider, rather than
the density field growing with time and points collapsing when they
cross a given density threshold, the collapse barrier evolves with
time and the field remains static. We adopt this latter convention.
Consequently, it means that the cosmological information encoded
in the growth of the power spectrum is transferred to δc(t). Note also
that the value of δc itself has a weak cosmology dependence (Lahav
et al. 1991; Eke, Cole & Frenk 1996), however, in what follows this
shall be neglected.

In the case of perfectly cold dark matter, σ 2(R) rises mono-
tonically towards smaller R and becomes infinite as R → 0. On
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Figure 6. Relative contribution of different types of objects to
the total WDM halo mass function. The black histogram shows
the fraction of “Halos”. The green histogram shows the abundance
of “’Proto-Haloes’, whereas the green line indicates the fraction of
objects that our SO-FOF algorithm wrongly identified as haloes.
See the text for more details about our classification method.

none of them could satisfactory separate the categories men-
tioned above. Some of the measures introduced in Abel et al.
(2012) or methods inspecting the shape of the Lagrangian
patch of the identified structures (such as that proposed by
e.g. Lovell et al. 2012) may help in automating such a proce-
dure. On the other hand, since proto-haloes, as well as some
“Not Halo” objects, are likely simply early stages of halo for-
mation, they are also likely to correspond to peaks in the initial
conditions with only their collapse time differing from those
corresponding to “Halos”. Thus, Lagrangian approaches might
not clearly separate our three classes of objects. An additional
complication for automatic classifications is that the haloes in
the critical regime, < 1011h−1M⊙, are resolved with only a
few thousand particles which is not enough to perform a de-
tailed analysis of their internal structure. We will defer further
exploration of these issues to future work.

In Fig. 6, we show the relative contribution of each of
these three categories to the WDM halo mass function. It is
very interesting to see that the groups are clearly localized
at different mass scales, although some overlap exists. High
masses are dominated by standard haloes. Right below the
cut-off, recently collapsed systems dominate. And the lowest
masses receive a similar contribution from Proto-Haloes and
from failures of our FoF-SO algorithm.

Before we continue, we would like to note that, as in most
classifications, the division between these three groups is some-
what arbitrary. This is accentuated by the subjective nature of
our visual inspection. For these reasons, we emphasise that the
distinction between different categories just provides a qual-
itative assessment of the nature of objects at different mass
scales, and of how they affect the WDM halo mass function.

Another point to note is that the fine division between
the categories does depend on the force resolution employed.

Figure 7. Contribution of different types of objects to the WDM
halo mass function. The red line show the abundance of standard
dark matter haloes. The green line represents haloes in final stages
of formation, while the blue line displays the abundance of objects
in initial stages of formation. Finally, the magenta line shows ob-
jects incorrectly identified as haloes by our algorithm. See the text
for more details on the classification, and Fig. 4 for examples of
structures in the various categories. We also display the mass func-
tion expected for a CDM case for comparison (black line). Vertical
dashed line indicate a limit where the abundance of haloes is not
affected by finite force resolution. The bottom panel shows the ratio
of our results to the expectations in a CDM scenario.

We have explored this by carrying out our T4PM run using a
PM mesh a factor of eight smaller, thus degrading our spatial
resolution by a factor of two. There are three aspects worth
noting.

1) The amount of filaments/sheets in our catalogues, as
well as the sum of Haloes plus Proto-Haloes remains roughly
the same when the force resolution is varied. This is because
the time of collapse of a filament depends mostly on large-scale
tidal and density fields, which are less sensitive to the force
resolution.

2) The distinction between Haloes and Proto-Haloes is
very different at different force resolutions. With higher force
resolution, caustics are created more rapidly, there is more
mixing, and haloes appear more relaxed. Note that due to
computational limitations, it is not possible for us to increase
the mass resolution of our runs needed to increase further the
force resolution.

3) The frequency of some type of FoF failures changes
considerably with force resolution. In this case, we find that
the number of Not-Haloes at the low mass end increased sub-
stantially, mainly due to an increase in the number of caustics
– a lower force resolution allows the turn-around radius to
move outwards.

c⃝ 2013 RAS, MNRAS 000, 1–12
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Summary

• Galaxy-DM connection has many interesting “features”. Most (all?) 
of these can be understood using CDM within the uncertainties of 
astrophysical modelling. 

• Simulations of CDM have a long history and make robust 
predictions. Simulations of nonCDM are relatively recent and are 
getting there. 

• Caveats are everywhere!


